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Lúıs Silva . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5



Lokesh Singh . . . . . . . . . . . . . . . . . . . . . . . . 202
Charles Stinson . . . . . . . . . . . . . . . . . . . . . . . 203
Fandi Sun . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Roman Šimon Hilscher . . . . . . . . . . . . . . . . . . 206
Sanket Tikare . . . . . . . . . . . . . . . . . . . . . . . 207
Christopher C. Tisdell . . . . . . . . . . . . . . . . . . . 208
Domagoj Vlah . . . . . . . . . . . . . . . . . . . . . . . . 209
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University of Sarajevo, Bosnia and Herzegovina

Džana Drino
University of Sarajevo, Bosnia and Herzegovina

Technical Secretariat

Senada Kalabušić
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Welcome message

Dear Colleagues

We look forward to welcoming you to the first-ever virtual conference on
difference equations and applications, ”The 26th International Conference
on Difference Equations and Applications (ICDEA 2021)”. While we re-
gret that the COVID-19 pandemic prevented us from holding the meeting
in Sarajevo, we are excited about the opportunity of having a virtual
conference. Furthermore, having the conference online allows reaching
broader participants than a traditional in-person conference could include.

A total of 255 participants registered for this conference from all over the
world. The conference features 14 plenary speakers experts in difference
equations/discrete dynamical systems and their interplay with nonlinear
sciences. Furthermore, five special sessions cover various themes in dif-
ference equations/discrete dynamical systems and their applications. In
addition, there are 83 contributed talks on various topics in difference
equations/discrete dynamical systems and their applications in biology,
economy, engineering, game theory, social sciences, etc.

We are sure that this conference will be motivating, significant, and valu-
able for all of you.

Welcome to ICDEA 2021 Virtual!

Organizing Committee of ICDEA 2021



About Sarajevo

Sarajevo city is the capital of Bosnia and Herzegovina, situated on the Miljacka River,
and it has always been smack bang on a geopolitical fault line. During the Roman Em-
pire, Sarajevo, together with Bosnia, was a border city between the Eastern and Western
Roman Empires.

In the Middle Ages, the city had the name Vrh-Bosna until it fell under the control of
the Ottoman Empire in 1429 and was renamed Bosna-Saraj or Bosna-Seraj. During the
Berlin Congress in 1878, Sarajevo was taken from the Ottomans and given to the Austro-
Hungarian Empire, again right on the borderline between two Empires, between East and
West, between Islam and Christianity the last 100 years, Sarajevo has been a member of
six different states. On the 28th of June 1914, WWI was triggered by the assassination of
Archduke Franz Ferdinand of Austria with his wife Sophie, Duchess of Hohenberg.

The city has ten bridges over the Miljacka River. The most famous one is the Latin
Bridge or Princip Bridge, the name of the assassin of Archduke Franz Ferdinand. The
bridge is on the coat of arms of Sarajevo. The city-wide tram service was the very first in
Europe. Locals proudly insist that the Austro-Hungarians modeled Vienna’s tram system
on theirs. The first Winter Olympic Games in Communist country were held in Sarajevo
in February 1984, winning over Sapporo, Japan, and Gothenburg, Sweden.

Sarajevo had the longest-running siege of any town in modern war history (1425 days).
Sarajevo was, and still is, a very culturally diverse city proudly known as the European
Jerusalem – within a very short walking distance, you come across Orthodox and Catholic
churches, synagogues, and mosques.
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Mean Square Characterisation of Linear Stochastic
Equations with Memory

John Appleby

School of Mathematical Sciences, Dublin City University, Dublin, Ireland
E-mail: john.appleby@dcu.ie

Emmet Lawless

School of Mathematical Sciences, Dublin City University, Dublin, Ireland

Presentation type: Plenary Talk

Necessary and sufficient conditions for the asymptotic stability of deterministic linear
autonomous equations with memory have been long understood. However, the situation
for stochastic equations with memory, whether in continuous or discrete time, is not so
well settled. In this talk, we concentrate on the scalar case (in discrete and continuous
time) and on the asymptotic behaviour of the mean square of the solution.

It is a ready consequence of work in the literature that, in the case of difference equa-
tions with finite memory, ideas laid out by Bellman can be used to resolve the matter
completely. In the scalar case, however, this comes at the cost of high–dimensional con-
ditions. Moreover, these ideas do not seem to transfer so smoothly to Volterra equations
(which have unbounded memory), or to continuous equations.

Our approach here is to create an auxiliary summation (or integral) equation, and to
determine the asymptotic behaviour using renewal theorems. This approach characterises
the asymptotic behaviour of the original stochastic equation in terms of a functional of the
fundamental solution of the underlying deterministic equation which has been stochasti-
cally perturbed. A formula for this functional can always be found in terms of the problem
data, and in some cases it can be computed in closed–form. Moreover, the discrete–time
calculations also guide us how to proceed in the continuous case. In particular, one can
provide a closed–form characterisation of the mean square behaviour of scalar stochas-
tic delay differential equations with a single delay, achieving parity with the deterministic
case. This is satisfactory, since the deterministic case has been understood since the 1950s.

Lastly, this work shows that the asymptotic behaviour in mean square gives rise to
new problems which are principally deterministic in character, and which can perhaps be
solved using existing non–stochastic methods.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina
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HOMOCLINIC TRAJECTORIES IN DYNAMICAL
SYSTEMS OF LOW DIMENSION

Francisco Balibrea

Departmento de Matematicas, Universidad de Murcia, Spain
E-mail: balibrea@um.es

Presentation type: Plenary Talk

On a dynamical system (I, f) where I is a compact real interval and f ∈ C(I, I),
a homoclinic trajectory is a non-periodic trajectory whose α − limit and ω − limit sets
coincide and are a cycle (a periodic trajectory). A point is called homoclinic if it belongs,
at least one, homoclinic trajectory.

The existence of a homoclinic trajectory usually indicates that in the system there are
trajectories of very complicated dynamical behaviour.

(I, f) has a homoclinic trajectory if and only if the map has a cycle whose period is
not a power of two (Block-Coppel book and Fedorenko-Sharkovsky). Also both conditions
are equivalent to positive topological entropy.

Homoclinic trajectories on dynamical systems on the square Q = [0, 1]2 can also be
considered using the same definitions than in the interval case. It is a more difficult case
to construct them. We will consider triangular maps of the form

F (x, y) = (f(x), g(x, y))

where f and g are real continuous maps in their domais of definition, respectively I and
I2.

Jointly with J.Smı́tal we have constructed an example of a map in the above family

possesing a homoclinic trajectory f(x) =





3x ifx ∈ [0, 1
3 ],

1 ifx ∈ [1
3 ,

2
3 ],

3(1− x) ifx ∈ [2
3 , 1]

Then f has periodic trajectories of all periods since has a periodic trajectory of period
3. Also it is not difficult to construct a homoclinic trajectory to the fixed point 0, that
given by

Γ0 = {0} ∪ (3−n)∞n=0

since f(1) = 0 and f(3−n−1) = 3−n when n ≥ 0.
We will consider other two dimensional systems on the square out of the family of

triangular maps where it is difficult to give explicit expressions of homoclinic trajectories.
In the first example it is studied also the dependence of such trajectories on parameter a.
In the case of diffeomorphisms we have to introduce new adapted definitions
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Difference Equations and Darwinian Dynamics

Jim Cushing

Department of Mathematics, Interdisciplinary Program in Applied Mathematics,
University of Arizona, Tucson, Arizona, USA

E-mail: cushing@math.arizona.edu

Presentation type: Plenary Talk

Although difference equations have a long and illustrious history of application to pop-
ulation dynamics, virtually none of these equations take evolutionary change by natural
selection, arguably the most fundamental principle in biology, explicitly into account. I
will describe a modeling methodology (Darwinian dynamics or evolutionary game theory)
by means of which evolutionary adaptation can be included in any difference equation
model for the dynamics of a biological population. I will discuss some basic theorems that
address the fundamental biological question of extinction versus survival and illustrate the
methodology with applications to a couple of questions of contemporary questions con-
cerning evolutionary adaptation. My primary goal is to introduce these types of equations
to researchers in difference equations for which there are many interesting challenges, open
questions, and opportunities to contribute mathematically and biologically to this field.
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Dynamical planar embeddings of tent inverse limit spaces.

Jernej Činč

University of Vienna, Austria and IT4Innovations, Ostrava, Czech Republic.
(joint work with Ana Anušić (University of São Paulo) and Henk Bruin (University of

Vienna))
E-mail: cincj9@univie.ac.a

Presentation type: Plenary Talk

Brown-Barge-Martin (BBM) embeddings of inverse limit of a parameterised family of
tent maps yield a natural way to construct a parameterised family of strange attractors
arising from planar homeomorphisms. This family of inverse limits has seen much attention
in the past three decades due to the classification problem known as the Ingram conjecture.
After Barge, Bruin and Štimac [3] resolved the conjecture, this family has seen another
surge in activity related with the detailed study of BBM embeddings of tent inverse limit
spaces which culminated in the work of Boyland, de Carvalho and Hall [4] and Anušić and
Činč [2]. In this talk I will overview two approaches for studying BBM embeddings and
discuss how Lorenz interval maps and Sturmian sequences appear naturally in this study,
see Anušić, Bruin and Činč [1]. I will close the talk with some remaining questions about
(non)-extendability of the natural extensions of inverse limits of tent maps and about the
topological structure of tent inverse limits. This talk is based on the joint works with Ana
Anušić (University of São Paulo) and Henk Bruin (University of Vienna).

References
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Non-autonomous difference equations/discrete dynamical
systems and applications

Saber Elaydi

Trinity University, USA
E-mail: selaydi@trinity.edu

Presentation type: Plenary Talk

In this talk, we will give a survey on some of the developments in non-autonomous
discrete systems generated by infinitely many continuous maps defined on locally compact
metric spaces. The focus will be on non-autonomous systems that are asymptotic to au-
tonomous systems or periodic systems.

Applications to evolutionary biological models will be investigated. Further applica-
tions to some epidemic models will be discussed.

At the end of the talk, we will present some open problems.
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Lattice difference equations

Peter E. Kloeden

Mathematisches Institut, Universität Tübingen, 72076 Tübingen, Germany
E-mail: kloeden@na.uni-tuebingen.de

Presentation type: Plenary Talk

Lattice difference equations are essentially difference equations on a Hilbert space of
bi-infinite sequences. They are motivated by the discretisation of the spatial variable in in-
tegrodifference equations arising in theoretical ecology. It is shown here that under similar
assumptions to those used for such integrodifference equations they have a global attrac-
tor, to which the global attractors of finite dimensional approximations converge upper
semi continuously. Corresponding results are also shown for lattice difference equations
when only a finite number of interconnection weights are nonzero and when the intercon-
nection weights themselves vary and converge in an appropriate manner. Random lattice
difference equations and their random attractors will also be discussed.
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Researches on actual or industrial applications of difference
equations: a chimeric task?

René LOZI

Department of Mathematics, Université Côte d’Azur, Nice, France
E-mail: Rene.lozi@univ-cotedazur.fr

Presentation type: Plenary Talk

Refering to the 26 issues of Journal of Difference Equation and Applications published
between 1995 and 2020, among the 2035 published research articles only 161 are dedicated
to applications in a very broad sense (8%). During the 10 first years only 12 over 491
articles (2.4%) belong to this category of papers. This percentage is slowly increasing since,
in the next 10 issues the ratio is 56/956 (5.9%) and finally in the last six issues it climbs
to 93/588 (10.1%). In their inaugural editorial Saber Elaydi and Gerry Ladas concluded
“In addition, applications are seen in such diverse disciplines as chaos theory, fractal
theory, population dynamics, public health, game theory, operations research, statistics,
sociology, economics, control theory, combinatorics, and numerical simulations of complex
systems”[1]. Does this goal is fully reached 26 years after? The analysis of the topics
covered in these 161 articles can be done splitting them in four categories:

Public health, biology, and population: 98 articles (61%) [modeling the spread of
diseases, parasites, SIR model: 43 articles (26.7%); population dynamics: 37 articles
(23%); Predator-Prey model: 14 article (8.7%); Neurons: 4 articles (2.5%)]

Economy money, market, etc.: 29 articles (18%)
Technical: 27 articles (16.8%) [Physics and Chemistry: 16 articles (10%); Cryptogra-

phy, big data, signal processing, random generator: 8 articles (5%); Optimization, control:
3 articles: (1.9%)]

Miscellaneous: 7 articles (4.3%).
Therefore, if population dynamics, public health and economics are well represented

with nearly four fifth of the publications, application of chaos theory, game theory, oper-
ation research, statistics, sociology, control theory, cryptography, simulation of complex
systems, received a poor attention from potential authors. We will try to understand what
are the hidden reasons of such lack of interest for application of difference equations in
these topics (competition with differential equations, with other scientific journals, etc.?)
and how to improve the interest for such actual or industrial applications.
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Beyond contractive iterated function systems

Krzysztof Leśniak
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E-mail: much@mat.umk.pl
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Institute of Mathematics, Lodz University of Technology, Wólczańska 215, 90-924  Lódź,
Poland

E-mail: filip.strobin@p.lodz.pl

Presentation type: Plenary Talk

In this talk we will give an overview of weakly contractive iterated function systems
(IFS) and highlight some results which prove useful when analysing noncontractive IFSs.
For example, we will discuss the Lasota-Myjak theory of semiattractors and show how
it can be used to explain the behaviour of certain noncontractive IFSs. We will then
consider examples of noncontractive IFSs which admit semiattractors. In particular, we
will focus on IFSs enriched with isometries. We will discuss the chaos game algorithm for
such systems.
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Generic chaos
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Department of Mathematics, Faculty of Natural Sciences, Matej Bel University,
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Presentation type: Plenary Talk

A topological dynamical system (X, f) given by a continuous selfmap f of a metric
space X is called generically chaotic or generically ε-chaotic if the set of all scrambled
pairs or ε-scrambled pairs is residual in X2, respectively.

The notion of generic chaos was suggested by A. Lasota. It is well understood on
the interval, mainly because generic chaos on the interval is equivalent with generic ε-
chaos and the latter can be characterized in terms of the behaviour of open balls under
iterations. Such a characterization of generic ε-chaos works in a large class of metric spaces,
therefore for the study of generic chaos it is important to know in which spaces, besides the
interval, generic chaos is equivalent with generic ε-chaos. Indeed, in such spaces we can
check generic chaos ‘macroscopically’, in terms of the behaviour of open balls (to verify
generic chaos using just the ‘microscopic’ definition appears to be an almost impossible
task). It has been known that all graphs are such spaces, but not all dendrites.

In the first part of the lecture we will discuss some properties of scrambled pairs and
scrambled sets and some known facts on generic chaos. Then we will describe the full
topological characterization of those dendrites, on which generic chaos is equivalent with
generic ε-chaos, i.e. dendrites on which generic chaos can be verified ‘macroscopically’.
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Discrete Painlevé equations and recurrence coefficients for
orthogonal polynomials

Walter Van Assche

Department of Mathematics, KU Leuven, Belgium
E-mail: walter.vanassche@kuleuven.be

Presentation type: Plenary Talk

Orthogonal polynomials on the real line always satisfy a three term recurrence relation.
The recurrence coefficients are explicitly known for classical orthogonal polynomials, but
for semiclassical orthogonal polynomials these recurrence coefficients satisfy (a system of)
non-linear recurrence relations, which can be identified as discrete Painlevé equations.
I will present various examples of this and discuss how these are related to the Painlevé
differential equations. In many cases one needs a special solution of these discrete Painlevé
equations satisfying some constraints.
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A Derivation Procedure and Analysis of Two-Species
Difference Equation Population Models

Gail Wolkowicz

Department of Mathematics and Statistics, McMaster University, Canada
E-mail: wolkowic@mcmaster.ca

Presentation type: Plenary Talk

A derivation procedure different from the commonly applied Euler discretization scheme
is proposed to formulate discrete two species population models. By distinguishing growth
and decline processes, we determine a multiplicative net per capita growth ratio. This tech-
nique is first applied to predator-prey relations. Under the assumption that the predator
declines exponentially in the absence of the prey and that the prey grows logistically in
the absence of the predator, a discretization of the classical Lotka–Volterra predator-prey
model is obtained. Applying the same derivation method to two competing species results
in a competition model, that, in its simplest form, is sometimes referred to as the discrete
Leslie/Gower model [1]. The analysis of these models shows the usefulness of nullclines in
combination with ther associated root-functions. By determining the uniqueness of these
positive root-functions and their position in the first quadrant, we present an elementary
approach to study the global dynamics of non-negative equilibria. Applying this technique
to the two-species competition model derived, we study the global stability of the non-
negative equilibria and offer an alternative method to the one used in [1, 2, 3]. For the
predator-prey model derived, the root-functions and nullclines are used to study the global
stability of the boundary equilibria, as well as, to prove the non-existence of n-periodic
orbits for n = 2, 3.
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Tiny models can help us understand huge models

James A. Yorke

University of Maryland 5465 Mystic Ct. Columbia, Maryland, USA
E-mail: yorke@umd.edu

Presentation type: Plenary Talk

I will be discussing a couple related “simple” maps that tell us a great deal about
very complex situations. This is joint work with Roberto De Leo, Yoshi Saiki, Shuddho
Das, Miguel Sanjuan, and Hiroki Takahasi. I will report mainly on 3 of our papers papers
that have been accepted for publication this year and are available on arXiv. Two are on
the logistic map rx(1− x). It has uncountably many parameter values with the following
property: The map has infinitely many disjoint unstable compact invariant Cantor sets.
We have determined how their stable and unstable manifolds interact. All this in a logistic
map. Secondly, we have created a baker-like piecewise linear map on a 3D cube that is
unstable in 2 dimensions in some places and unstable in 1 in others. It has a dense set of
periodic orbits that are 1D unstable and another dense set of periodic orbits that are all
2D unstable. The map is ergodic. Lebesgue measure is invariant.
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A Periodic Discrete Dynamical Model on Wolbachia
Infection Frequency in Mosquito Populations

Jianshe Yu

Center for Applied Mathematics, Guangzhou University, China
E-mail: jsyu@gzhu.edu.cn

Presentation type: Plenary Talk

How to prevent and control the outbreak of mosquito-borne diseases, such as malaria,
dengue fever and Zika, is an urgent worldwide public health problem. The most conven-
tional method for the control of these diseases is to directly kill mosquitoes by spraying
insecticides or removing their breeding sites. However, the traditional method is not ef-
fective enough to keep the mosquito density below the epidemic risk threshold. With
promising results internationally, the World Mosquito Program’s Wolbachia method is
helping to reduce the occurrence of diseases transmitted by mosquitoes. In this talk, we
will introduce a generalized discrete model to study the dynamics of Wolbachia infection
frequency in mosquito populations where infected mosquitoes are impulsively released.
This generalized model covers all the relevant existing models since 1959 as some special
cases. After summarizing known results of discrete models deduced from the generalized
one, we put forward some interesting questions to be further investigated for the periodic
impulsive releases.
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Invariant Manifolds with/without Hyperbolicity
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Presentation type: Plenary Talk

In this talk some advances on invariant manifolds are introduced under assumption-
s of hyperbolicity, nonuniform hyperbolicity, pseudo-hyperbolicity, or no hyperbolicity.
In order to describe hyperbolicity, related problems on roughness and admissibility for
exponential dichotomies are discussed.
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Stability Results for Discrete-Time Predator-Prey Models
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Presentation type: Special Session Talk
The title of the special session: Population Dynamics and Related Topics

We consider a two-dimensional discrete-time predator-prey model that was developed
by Ackleh et. al (2019). We derive conditions for the global stability of the unique
interior equilibrium using an approach based on nullcline analysis. Then, we consider a
threedimensional evolutionary counterpart developed in Ackleh et. al (2019) which couples
the population dynamics with the dynamics of an evolving phenotypic trait. Using a
perturbation argument we extend the global stability results to the interior equilibrium of
the threedimensional predator-prey model. If time permits, we will present an extension of
the twodimensional model to a three-dimensional predator-prey model with stage structure
in the predator and study its local dynamics.
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In this talk, we consider a discrete-time predator-prey model in which vigilance of prey

act as a tradeoff between the safety and growth rate of the prey. We consider the vigilance

parameter as the main parameter and investigate mathematical properties of the system

such as stability, permanence, both period-doubling and Neimark-Sacker bifurcations of

the model. Numerical simulations are carried out to illustrate the analytical findings and

to further explore the impact of prey vigilance on the dynamics of the system. Finally,

some mathematical questions that need further investigation will be posed.
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Global stability of population models
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Presentation type: Special Session Talk
The title of the special session: Population Dynamics and Related Topics.

I will discuss the ‘split Lyapunov function’ method (introduced for Lotka-Volterra
dynamics in [1]) and its applications to establishing global stability of fixed points in finite
dimensional Kolmogorov-type models of population growth [2]. Time permitting, I will
comment on how the split Lyapunov function method links to the carrying simplex, an
attracting invariant manifold codimension one that often appears in the models that I
discuss.
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Global attractivity of compartment models and neural
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We consider a system of nonlinear differential equations with a distributed delay

dxi
dt

= gi(t)




t∫

hi1(t)

dτ1ri1(t, τ1)· · ·
t∫

his(t)

fi(x1(τ1), x2(τ2), . . . , xs(τs)) dτsris(t, τs)− xi(t)




and obtain global asymptotic stability conditions, which are independent of delays. The
ideas of the proofs are based on the notion of a strong attractor of a vector difference
equation associated with a nonlinear vector differential equation. The results are applied
to compartment-type models of population dynamics with Nicholson’s blowflies growth
law and to Hopfield neural networks. The ideas of the proofs are based on the notion
of a strong attractor of a vector difference equation associated with a nonlinear vector
differential equation. The results extend the theorem that for a one-dimensional equation
with a distributed delay, delay-independent stability can be deduced from attractivity
of an associated difference equation [1]. The talk describes the progress generalizing [2]
recently published in [3].
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A new tool for studying the global stability of discrete-time
population models
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Presentation type: Special Session Talk
The title of the special session: Population Dynamics and Related Topics.

In this talk, we will present a new geometric method to study the stability of one-
dimensional discrete-time models. We will provide examples to illustrate how the method
works. In particular, we will show that it can be used to complement and extend some
stability results in the literature both for discrete-time models and continuous-time models
with delay. The talk is based on work in collaboration with J. Perán, J. Segura, C. Guiver
and H. Logemann [1, 2, 3].

References

[1] D. Franco, J. Perán and J. Segura, Global stability of discrete dynamical systems via
exponent analysis: applications to harvesting population models, Electron. J. Qual.
Theory Differ. Equ., No. 101 (2018), 1–22.

[2] D. Franco, C. Guiver, H. Logemann, J. Perán. On the global attractor of delay differen-
tial equations with unimodal feedback not satisfying the negative Schwarzian derivative
condition. Electron. J. Qual. Theory Differ. Equ., No. 76 (2020), 1-15.

[3] D. Franco, J. Perán, J. Segura, Stability for one-dimensional discrete dynamical sys-
tems revisited, Discrete Contin. Dyn. Syst. Ser. B 25 (2020), No. 2, 635–650.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

36



Modified carrying simplex and global dynamics of
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This talk is based on the author’s recent paper [3]. For a C1 map T from C = [0,+∞)N

to C of the form Ti(x) = xifi(x), the dynamical system x(n) = Tn(x) as a population
model is competitive if ∂fi

∂xj
≤ 0 (i 6= j). A well know theorem for competitive systems,

presented by Hirsch [2] and proved by Ruiz-Herrera [1] with various versions by others
(such as [4]), states that, under certain conditions including the map being competitive
(retrotone), the system has a compact invariant surface Σ ⊂ C (called carrying simplex)
that is homeomorphic to ∆N−1 = {x ∈ C : x1 + · · · + xN = 1}, and every trajectory in
C \ {0} is asymptotic to one in Σ. The theorem has been well accepted with applications
requiring all the N2 entries of the Jacobian matrix Df = ( ∂fi

∂xj
) to be negative. We point

out that, with a modified carrying simplex in mind, the above requirement is unnecessarily
strong and too restrictive. We prove the existence and uniqueness of a modified carrying
simplex by reducing that condition to requiring every entry of Df to be nonpositive and
each fi is strictly decreasing in xi. As a example of applications of a modified carrying
simplex, sufficient conditions are provided for vanishing species and dominance of one
species over others. Another example is the global attraction (repulsion) of a heteroclinic
cycle depending on the global repulsion (attraction) of the unique interior fixed point.
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We investigate the plant-herbivore model’s dynamics. The plant’s biomass without
herbivores grows with a logistic equation assuming that the herbivore (parasitization)
occurs after the host’s density-dependent growth regulation occurs. We classify the equi-
librium points. We show that the boundary equilibrium undergoes the transcritical, fold,
and period-doubling bifurcation, whereas the interior equilibrium undergoes a Neimark-
Sacker bifurcation. Furthermore, the system exhibits bistability between the stable interior
attractors in the interior and the stable attractors in the x−boundary logistic dynam-
ics (periodic orbits and strange attractors) for particular numerical values of parameters.
Thus, sufficient conditions for the permanence of the plant-herbivores system are obtained,
ensuring the coexistence of both species.
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Discrete-time plant-pest models with two different constant control strategies (i.e.,
removal versus reduction strategies) have been investigated to understand how to regulate
the population of pest. The corresponding optimal control problem has been explored on
three scenarios of bistability plant-pest dynamics where these dynamics are determined
by the growth rate of the plant and the damage rate inflicted by pest. Furthermore,
the impacts of fluctuating environments on discrete-time plant-pest dynamics have been
explored. Through analysis and simulations, we identify and evaluate the optimal controls
and their impact on the plant-pest dynamics. There are critical factors to characterize
the optimal controls and the corresponding plant-pest dynamics such as the control upper
bound (the effectiveness level of the implementation of control measures) and the initial
conditions of the plant and pest. The results show that the pest is hard to be eliminated
when the control upper bound is not large enough or the initial conditions are chosen
from the inner point of the basin of attractions. However, as the control upper bound
is increased or the initial conditions are chosen from near the boundary of the basin of
attractions, then the pest can be manageable regardless of fluctuating environments.
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In this talk, we present discrete-time models for interactive dynamics of wild and sterile
mosquitoes. The survival functions are assumed to be of the Ricker-type or Beverton-Holt-
type nonlinearity. We investigate the stability of the trivial fixed point and the existence
and stability of positive fixed points. Other dynamical features, such as periodic solutions,
are demonstrated as well. We show both theoretical and numerical results.
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Stability is one of the most important concepts in dynamical systems. It is well known
that, a fixed point of a discrete dynamical system is locally asymptotically stable if all
the eigenvalues of the Jacobian matrix, evaluated at the fixed point, are less than one in
absolute value.

However, in the most cases, we are not able to compute the eigenvalues. The challenge
here is to provide stability conditions without knowing the eigenvalues of the Jacobian
matrix.

The necessary and sufficient algebraic conditions for the roots of a real polynomial
to lie inside the unit circle have been established by Jury [2] in a table form, where the
constraints are obtained only by evaluation of second-order determinants.

In order to determine such a table, it is necessary to know all the coefficients of the
characteristic polynomial of the Jacobian matrix. Those coefficients may be obtained from
the trace, the determinant and the minors of the Jacobian matrix.

In this talk, I will present an alternative way to compute the values of the coefficients
of a characteristic polynomial. I use some specific notation that turns such computation
friendly, specifically from the computational point of view.

The tools that we present here, may be applied in stability theory of discrete dy-
namical systems. In the literature, there are conditions for 2−dimensional systems [1],
3−dimensional systems [3] and 4−dimensional systems [4] involving the trace, the deter-
minant and the sum of the minors of the Jacobian matrix. Beyond dimension 4, as far as I
know, there are no studies for the linear stability conditions of discrete dynamical systems
involving the trace, the determinant and the sum of the minors of the Jacobian matrix.
The present work [5] solve this gap since these stability conditions may be determined
from Jury’s table using this new approach.
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Releasing infectious pests could successfully control and eventually maintain the num-
ber of pests below a threshold level. To address this from a mathematical point of view,
two non-smooth microbial pest-management models with threshold policy are proposed
and investigated in the present paper. First, we establish an impulsive model with state-
dependent control to describe the cultural control strategies, including releasing infectious
pests and spraying chemical pesticide. We examine the existence and stability of an order-
1 periodic solution, the existence of order-k periodic solutions and chaotic phenomena of
this model by analyzing the properties of the Poincaré map. Secondly, we establish and
analyze a Filippov model. By examining the sliding dynamics, we investigate the global
stability of both the pseudo-equilibria and regular equilibria. The findings suggest that we
can choose appropriate threshold levels and control intensity to maintain the number of
pests at or below the economic threshold. The modelling and control outcomes presented
here extend the results for the system with impulsive interventions at fixed moments.
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We derive an alternative delayed population growth difference equation model based on
a modification of the Beverton–Holt recurrence. By distinguishing the growth processes
from the decline processes, we assume a delay only in the growth contribution, in the
spirit of [1]. We additionally assume that those individuals that die during the delay, do
not contribute to growth, an assumption introduced by Arino et al. in [2] and applied to
the continuous logistic equation. The derived delay recurrence differs from the delayed
logistic difference equation, known as the delayed Beverton–Holt or Pielou model, that
was formulated as a discretization of the Hutchinson model. The analysis shows that if
the time delay exceeds a critical threshold, the population goes extinct for all non-negative
initial conditions. If the delay is below this threshold, the population survives and its size
converges to a positive asymptotically stable equilibrium that is decreasing in size as the
delay increases. These dynamics are arguably more realistic than the obtained dynamics
for the (delayed) Pielou model, as one would expect that if a delay, i.e., time required
before members of a population can contribute to growth, is too long, that the population
would not be able to avoid extinction
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If Q+H is the linearization of a nonlinear matrix model for a population with finite-
dimensional structure at the zero vector (the extinction state) with nonnegative matrices
Q and H and Q representing survival and individual development and H representing
reproduction, r(Q + H) − 1 and rH(I − Q)−1 − 1 have the same sign if r(Q) < 1 and
a few reasonable extra conditions are satisfied [1]. Here r denotes the spectral radius.
This result remains true if Q and H are positive linear bounded operators on an ordered
Banach space X with generating normal cone X+ [2]. If a two-sex population with mating
is considered, H may only be a homogeneous continuous order-preserving operator on X+.

We discuss to what degree the result remains valid in such a situation. The main
difficulty is that it is not clear whether the spectral radius of H ◦∑∞n=0 λ

−n−1Qn is a
continuous function of λ > r(Q).

Applications to structured two-sex populations models will be presented.
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We consider a discrete-time predator-prey system in which the prey is evolving in
response to an environmental stressor. Two types of evolutionary responses are compared:
frequency-independent selection in which an individual’s fitness is determined solely by the
trait that it possesses, and frequency-dependent selection where an individual’s fitness also
depends on the traits possessed by other individuals. While it is shown that both types
of evolution may destabilize the system dynamics, for the frequency-independent case this
requires that evolution is sufficiently fast and results in a period doubling-route to chaos.
In contrast, frequency-dependent selection may destabilize the system dynamics even for
slow evolution via a Neimark-Sacker bifurcation. Moreover, unlike frequency-independent
selection, we show that frequency-dependent selection may result in evolutionary suicide.
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Motivated by the Feline Immunodeficiency Virus, the virus that causes AIDS in cat
populations, in this talk, we will use discrete-time infectious disease models with demo-
graphic strong Allee effect to examine the impact of the fatal susceptible - infected (SI)
infections on two different types of density dependent growth functions: Holling type III or
modified Beverton-Holt per-capita growth function (compensatory dynamics), and Ricker
per-capita growth function with mating (overcompensatory dynamics). The occurrence
of the strong Allee effect in the disease-free equation renders the SI population model
bistable, where the two coexisting locally asymptotically stable equilibrium points are the
origin (catastrophic extinction state) and either another fixed point or an intrinsically
generated demographic period k > 1 population cycle. We will use the basic reproduction
number, R?0, and the spectral radius, λk, to examine the structures of the coexisting at-
tractors. In particular, we will show that the fatal disease is not only capable of enlarging
or shrinking the basin of attraction of the catastrophic extinction state, but it can also
fracture the basins of attraction into several disjoint sets. Thus, making it difficult to
specify the asymptotic SI disease outcome in terms of all initial infections. The complex-
ity of the basins of attractions appear to increase with an increase in the period of the
demographic population cycles.
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It is well known that bifurcation phenomena in discontinuous maps and continuous
maps may be quite different. Recently, a novel approach for investigation of discontinuous
maps has been suggested [1] which surprisingly combines several aspects of the dynamics
commonly observed in both classes of maps. The key idea of this approach is to extend
the definition of a discontinuous map in such a way that at the points of discontinuities,
the function is considered to be set-valued, but, importantly, its solutions are analysed
as single-valued trajectories belonging to a set (rather than set-valued themselves). By
construction, in addition to all orbits existing in the original discontinuous map, such an
extended map (referred to as a map with vertical branches) may have an infinite number
of so-called hidden orbits including points inside the discontinuities.

Maps with vertical branches turn out to be useful for many purposes. In particular,
they simplify the bifurcation analysis for discontinuous maps by describing the bifurcation
structures in terms well-known for continuous maps. Here, hidden orbits provide “missing
parts” of the bifurcation diagrams, turning border collision bifurcations at which a cycle
appears “as if from nowhere” into the usual border collision flip and fold bifurcations [2].
Moreover, if a discontinuous map acts as a model of a system with a very fast but continu-
ous switching process, a map with vertical branches helps to identify the dynamics which
is neglected in such a modeling approach.
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One of the most fundamental results proven for continuous 1D maps is the famous
Sharkovsky theorem (which implies, in particular, the well-known rule “period three im-
plies chaos”). It is also easy to demonstrate that this theorem does not apply to usual
discontinuous maps, where, for example, a 3-cycle may exist alone, without any further
coexisting cycles. However, it turns out that the Sharkovsky theorem can be proven not
only for continuous but for maps with vertical branches as well [3]. The class of maps with
vertical branches is broader than the class of continuous ones (every continuous function
is connected but not vice versa). As the maps with vertical branches considered in our
work are connected, the Sharkovsky theorem applies to them. Here, hidden cycles restore
the Sharkovsky ordering, providing the cycles of all periods which are missing in the usual
discontinuous map (without vertical branches).

A striking property of hidden orbits is that the existence of two distinct hidden cycles
implies that a number of further hidden orbits exist as well, namely a countable number of
other hidden cycles as well as an uncountable number of hidden aperiodic orbits. Although
all these orbits may be located at a final number of points in the state space (the points of
discontinuities and their preimages), their union can be seen as a hidden chaotic repeller.
In the simplest case, the existence of a hidden fixed point and a hidden 2-cycle implies the
existence of hidden cycles of all periods, which can be interpreted as an unexpected form
of the well-known rule, namely “period two implies chaos”.
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A dynamic adjustment mechanism, based on replicator dynamics (or imitate the bet-
ter mechanism) in discrete time, is used to study the time evolution of a population of
players facing a binary choice game with social influence, characterized by payoff curves
that intersect at two interior points, also denoted as thresholds. The time evolution of the
system is obtained by the repeated application of a noninvertible one-dimensional map.
Such binary game can be interpreted as a club good game, in which players have to choose
either joining or not the club in the presence of cost sharing, so that they can enjoy a
good or a service provided that a “participation” threshold is reached. At the same time
congestion occurs beyond a second higher threshold. These binary choice models, can be
used (and indeed have been used in the literature) to represent several social and economic
decisions, such as technology adoption, joining a commercial club, R&D investments, pro-
duction delocalization, programs for environmental protection. Existence and stability of
equilibrium points are studied, as well as the creation of more complex attractors (periodic
or chaotic) related with overshooting effects. The study of some local and global dynamic
properties of the evolutionary model proposed reveals that the presence of the “partici-
pation” threshold causes the creation of complex topological structures of the basins of
coexisting attracting sets, so that a strong path dependence is observed. Moreover, if a
memory effect is added, so that the new state depends not only on the previous state
but on a combination of previous states as well, a two-dimensional noninvertible map is
obtained. The dynamic effects of memory, both in the form of convex combination of a
finite number of previous observation (moving average) and in the form of memory with
increasing length and exponentially fading weights are investigated as well, and the cre-
ation of non connected or multiply connected basins of attraction is explained by using
the method of critical curves.
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We consider an economy composed by linked and interacting real, monetary and finan-
cial sectors, and it is insipred by the model proposed in Blanchard (1981) and Semmler
(2011). The setup for the real economy consists in a simple Keynesian good market in
a closed economy where the production adjusts with respect to the aggregate demand.
The money market is regulated by the standard assumption of an LM-equilibrium. In the
financial market, the stock price is determined by a market maker who adjusts the price
with respect to the current excess demand, which depends on the population of agents
that can decide to participate or not in the financial market. Agents can decide to invest
in the financial market or in the money market on the basis of an evolutionary selection
mechanism regulated by the comparison between the return of the stock and the money
market. Finally, we take into account both fundamentalist and chartist agents for the
financial market. The link between the real and the financial sector is described by the
dependence of private expenditure with respect to the stock price, resembling the fact that
the status of the households and firms is positively/negatively affected by the good/bad
performance of the financial market. The national income affects expected returns and,
through the money market equilibrium, the interest rate, which both determine the even-
tual participation of agents in the financial market. Hence both real and money sectors
affect the financial one. The influence of the financial sector on that monetary is through
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the national income, in which, as we said, private investments depend on the stock
price. The link between real and monetary sectors is both direct, encompassed in the LM-
equilibrium, and indirect through the financial sector. The model consists of a discrete
time dynamical system that describes the interaction between the variables characterizing
each market sector. We show the effect of the parameters characterizing the three sectors
on the national income, the stock price and the share of agents that participate to the
financial market at the equilibrium. Moreover, we investigate the possible emergence of
out-of-equilibrium complex dynamics and the stabilizing/destabilizing role of each market
sector. We show the emergence of both chaotic unpredictable fluctuations in the economic
observables, as well as quasi-periodic dynamics resembling the businnes cycle.
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The method of critical curves can be exploited to study chaos synchronization phenom-
ena in discrete dynamical systems with an invariant one-dimensional submanifold. Some
examples of two-dimensional discrete dynamical systems, which exhibit synchronization of
chaotic trajectories with the related phenomena of bubbling, on-off intermittency, blowout
and riddles basins, are examined by the usual local analysis in terms of transverse Lya-
punov exponents, whereas segments of critical curves are used to obtain the boundary of a
two-dimensional compact trapping region containing the one-dimensional Milnor chaotic
attractor on which synchronized dynamics occur. Thanks to the folding action of critical
curves, the existence of such a compact region may strongly influence the effects of bub-
bling and blowout bifurcations, as it acts like a “trapping vessel” inside which bubbling
and blowout phenomena are bounded by the global dynamical forces of the dynamical
system.
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We consider the secant method applied to a polynomial p as a dynamical system acting
on the real plane. If the polynomial p has a local extrema at a point α then the secant
map exhibits a 3-cycle at the point (α, α). We propose a simple model map T to explain
the behavior of S3 near the point (α, α). In many cases this 3-cycle has a non-empty basin
of attraction and their boundary is related to the invariant manifold of some objects. This
is a joint work with Ernest Fontich and Xavier Jarque.
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We consider non-autonomousN -periodic discrete dynamical systems of the form xn+1 =
Fn(xn, ε), xn ∈ Rm, having when ε = 0, an open continuum of initial conditions such that
the corresponding sequences are N -periodic. From the study of some variational equations
of low order we obtain successive maps, that we call discrete Melnikov functions, such that
the simple zeroes of the first one that is not identically zero control the initial conditions
that persist as N -periodic sequences of the perturbed discrete dynamical system.

We apply these results to several examples. For instance, we prove that 1-dimensional
N -periodic Abel difference equations can have at least N−1 isolated N -periodic solutions.
This show that there is no upper bound for the number of isolated periodic orbits that Abel
difference equations can have. This result is in contrast with what happens with linear or
Riccati difference equations where these upper bounds exist and are 1, or 2, respectively.
We also study periodic non-autonomous perturbations of some globally periodic difference
equations like Lyness or Todd equations.

This talk is based on the papers [1, 2].
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The role of dividend policies in fluctuations

Francesca Grassetti

Department of Mathematics, Politecnico di Milano, Italy
E-mail: francesca.grassetti@polimi.it

Cristiana Mammana

Department of Economics and Law, University of Macerata, Italy
E-mail: cristiana.mammana@unimc.it

Elisabetta Michetti

Department of Economics and Law, University of Macerata, Italy
E-mail: elisabetta.michetti@unimc.it

Presentation type: Special Session Talk
The title of the special session: Invertible and Noninvertible Maps: Theory and
Applications

This work investigates how dividend policies may influence the creation and propaga-
tion of cycles and chaotic behaviours between real economy and financial markets. We
focus on the effect of a constant dividend policy on the stability of the aggregate economy,
by means of a discrete dynamical framework in which managers, individuals and financial
mediators coexist. We show the counter-intuitive effect of the dividend payout ratio: in a
developed economy, an increase in dividends leads to a lower stock price level due to the
cross feedback effect between markets. Moreover, in non-developed economies the choice
of managers and individuals may not influence the propagation of fluctuations, while in
developed economies, high payout ratios and high sensitivity to market trends trigger a
cross feedback effect between the two markets that amplify their volatility and drags the
whole economy into fluctuations and cycles.
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[1] J. Caballé, X. Jarque, X., E. Michetti, E. Title of the Chaotic dynamics in credit
constrained emerging economies, Journal of Economic Dynamics & Control, 30 (2006),
1261-1275.

[2] J. H. Cochrane, Financial Markets and the Real Economy, Edward Elgar, 2006.

[3] R. M. Solow, A contribution to the theory of economic growth, Quarterly Journal of
Economics 70 (1956), 65-94.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

59



[4] J. Wenzelburger Perfect forecasting, behavioral heterogeneities and asset prices in In T.
Hens and K. Reiner Schenk-Hoppe (Eds.), Handbook of Financial Markets: Dynamics
and Evolution, Elsevier (2006).

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

60



Topological properties of the immediate basins of attraction
for the secant method

Xavier Jarque

Universitat de Barcelona, Barcelona, Catalonia
E-mail: xavier.jarque@ub.edu

Presentation type: Special Session Talk
The title of the special session: Invertible and Noninvertible Maps: Theory and
Applications

We study the discrete dynamical system defined on a subset of R2 given by the iterates
of the secant method applied to a real polynomial p. Each simple real root α of p has
associated its basin of attraction A(α) formed by the set of points converging towards the
fixed point (α, α) of S. We denote by A∗(α) its immediate basin of attraction, that is,
the connected component of A(α) which contains (α, α). We focus on some topological
properties of A∗(α), when α is an internal real root of p. More precisely, we show the
existence of a 4-cycle in ∂A∗(α) and we give conditions on p to guarantee the simple
connectivity of A∗(α).
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In this paper we present a survey of results about the dynamics of some disctere discon-
tinuous population models. We study oscillations, the structure of semicycles, perodicity,
invariant intervals, attractivity, and bifurcations. We focus on the classical Williamson’s
population model [4] and an equivalent model

xn+1 = (a− bh(xn − c))xn,

(h - Heaviside function, x0, c > 0, 0 < b < 1 < a < b + 1 ) which was used in modeling
the spread of West Nile epidemic [2]. In addition, we consider properties of discontinuous
Beverton-Holt type difference equation, whose carrying capacity and inherent growth rate
both have jump discontinuities [3]. Also, we address the dynamics of a general nonlinear
population model with two jump discontinuities exhibiting Allee-type effect [1]. Some
preliminary results are introduced, few generalizations are presented, and several open
problems are also discussed.
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We present some possible applications of hybrid models to economics. In particular,
we consider evolutionary systems in which some state variables evolve in continuous time
whereas the purely evolutionary dynamics evolve at discrete times. Through a discretiza-
tion of the continuous variables, the problem is then reformulated by means of (mainly
noninvertible) maps.

In the first example, the diffusion of corporate social responsibility is investigated by
employing a hybrid evolutionary game where each firm chooses between being either so-
cially responsible, which implies devoting a fraction of its profit to social projects, or non-
socially responsible. Consumers prize socially responsible companies by paying a higher
reservation price for their products. The hybrid evolutionary framework is characterized
by quantity dynamics that describe the oligopolistic competition given firms’ belief about
the composition of the industry. At regular intervals of time, this belief is endogenously
updated by a retrospective comparison on the profits obtained and on the basis of an
evolutionary mechanism.

The second application proposes a bio-economic model of exploitation of renewable
commercial resources. To take into account the typically continuous-time modeling of
biological species and, instead, of the specialized harvesting activities, which by its nature
cannot change continuously, the resulting dynamic system is again of the hybrid type, i.e.
continuous for biological variables and discrete for the economic ones. We study the dy-
namic properties of the system through an equivalent three-dimensional noninvertible map
to understand how economic parameters influence the long-run availability of resources.
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We describe the dynamics of the piecewise linear maps

Fα(x, y) =

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x− sign(y)
y

)
with α =

π

3
,
π

2
and

2π

3
. (1)

These maps correspond with the ones associated with the difference equations xn+2 =
−xn − ρxn+1 + sign(xn+1) with ρ ∈ {−1, 0, 1}, studied by Chang, Wang and Cheng, see
[1] and references therein.

The maps (1) are pointwise periodic, i.e. bijective in R2 and such that each point is
periodic, but they are not globally periodic. For each of these maps we find a first integral.
These first integrals exhibit unusual characteristics in the context of discrete dynamical
systems: for instance, their set of values (the energy levels) are discrete, thus quantized.
Furthermore, the level sets are bounded sets whose interior is like a necklace formed by a
finite number of open tiles of a certain regular or uniform tessellation.

We detail the action of the maps on each invariant set of tiles in geometrical terms.
Consider a map in (1) with first integral V , then: (a) We prove that Fα induces a dynamics
between the M tiles of the necklace forming the level set {V (x, y) = c}, which is conjugate
to the one generated by an affine map h : ZM → ZM , which is k-periodic with k ∈
{M,M/2} ∩ N. Notice that, geometrically, Fα acts as a rotation among the tiles (beads)
of the necklace. (b) We prove that each tile is invariant by F k, which is a rotation of
order p around the center of the tile. As a consequence, on each tile there is a k-periodic
point (the center) and the rest of points are kp-periodic. The map h and all the values of
M , k and p depend explicitly on the energy level c.

This is a joint work with Anna Cima, Armengol Gasull and Francesc Mañosas, see [2].
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Border collision bifurcations of fixed points and cycles are widely investigated in con-
trast to those of chaotic attractors, for which their transformations are usually associated
with homoclinic bifurcations. For the most extensively studied class of piecewise smooth
maps, i.e., 1D piecewise monotone maps with a single discontinuity, a chaotic attractor
must include the border point, and thus, cannot collide with it [1]. If a map has multiple
discontinuities, a direct border collision for a chaotic attractor becomes possible.

In the present paper we consider a 1D piecewise increasing, everywhere expanding
linear map with two discontinuities and describe two types of bifurcations for chaotic
attractors, which are not associated with any homoclinic bifurcation. In the simplest
case, a chaotic attractor collides with a discontinuity point, which does not belong to this
attractor, a phenomenon called an exterior border collision bifurcation. More sophisticated
cases are grouped under the term interior border collision bifurcation. It occurs when some
critical point (located inside a chaotic attractor) has exactly two preimages before the
bifurcation. At the bifurcation moment this critical point coincides with another critical
point, due to which one of its preimages disappears afterwards.
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Modern monetary policy has emphasized that maintaining a stable monetary environ-
ment depends crucially on the ability of the policy regime to control inflation (and output)
expectations. In fact, the activity of modern Central Banks is a form of management of
expectations. The present work considers a standard New Keynesian model, described by
a two-dimensional nonlinear map, to analyze the bifurcation structure when agents own
heterogeneous expectations on inflation and output gap, and update their beliefs based on
past performance. Agents are then allowed to switch among predictors over time. Depend-
ing on the degree of reactivity of the monetary policy to inflation and output deviations
from the target equilibrium, different kind of dynamics may occur. Multiple equilibria
and complicated dynamics, associated to codimension-2 bifurcations, may arise even if the
monetary policy adheres to the Taylor principle. We show that if the monetary policy
accommodates for a sufficient degree of output stabilization, complicated dynamics can
be avoided and the number of coexisting equilibria reduces.
In the second part of the analysis, an arbitrarily large number of agents’ beliefs is con-
sidered by applying the concept of Large Type Limit. In this respect, the intensity of
choice or the spread of beliefs is crucial for the extent of the Central Bank to stabilize
the economy. When the predictors are largely dispersed around the target, the Taylor
principle is a requisite for stability; when the set of beliefs is somehow anchored to the
target, stability can be achieved with a weaker monetary policy.
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We continue our study of behavioral change - as a transition between coexisting attrac-
tors - in the context of a stochastic, non-linear consumption model with interdependent
agents. A non-invertible map constitutes the deterministic skeleton of the respective
stochastic system. Our earlier work is extended by considering transitions potentially
occurring between four coexisting deterministic attractors (4-cycle, 5-cycle, and 2 fixed
points). While the immediate basins of the two fixed points possess a smooth boundary,
the basin boundaries of the other attractors are of a non-smooth - possibly fractal - nature.

Relying on the indirect approach to the analysis of a stochastic dynamic system, we
describe the potentially existing transition scenarios, and identify conditions in terms of
behavioral and environmental parameters under which such transitions are likely to occur.
Our stochastic analysis depends crucially on the stochastic sensitivity function technique
due to [1] and its various spin-offs. Transitions occur as a consequence of specific relations
prevailing between deterministic concepts (immediate basins of attraction) and stochastic
concepts (confidence sets).

The key contribution of the paper consists in a solution to the problem of estimating
noise levels for which transitions become likely (critical intensities) when the boundary of
a basin is non-smooth. Secondly, we try to provide an economic interpretation of complex
transitions between several coexisting consumption attractors.
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In the present work, starting from the 1D evolutionary Muthian cobweb model by
Hommes and Wagener in [2], where the economy is populated by biased agents and unbi-
ased fundamentalists, we investigate the effects generated by adaptively adjusted beliefs
about prices of the good they produce. Like done in [2], we focus on the case in which
the Muthian model is globally eductively stable in the sense of Guesnerie [1], being stable
under naive expectations. In more detail, we first assume that just biased agents, being
aware of the systematic errors they make in their forecasts, partially rely on an adaptive
adjustment of beliefs, obtaining a 3D model, which has a unique steady state. Although
in [2] the fundamental steady state is always stable and at most it can coexist with a
period-two cycle, we prove that on increasing the reactivity of the evolutionary mecha-
nism for the steady state in our setting there may be up to two stability thresholds and
that the equilibrium can coexist with a quasiperiodic attractor. We contrast such results
with those we find for the 4D setting, obtained by assuming that unbiased fundamentalists
update their belief about the fundamental value partially relying on the same adaptive
adjustment mechanism used by biased agents. Also in this case there exists just the funda-
mental equilibrium, whose stability conditions, under suitable homogeneity assumptions
on the parameters, are stricter than those derived for the 3D framework, highlighting that
the adoption of the considered adaptive mechanism by unbiased fundamentalists produces
locally a destabilizing effect on the equilibrium, even if globally the complexity in the
dynamics decreases with respect to the 3D setting. Under more general assumptions on
the parameters related to biased agents and unbiased fundamentalists, we show that the
4D framework, still admitting the same unique steady state as in the homogeneous case,
is able to generate quasiperiodic dynamics. We derive the local stability conditions for the
equilibrium in the 4D setting under the more general parameter assumptions, too.
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An asset pricing model with chartists, fundamentalists and trend followers is consid-
ered. A market maker adjusts the asset price in the direction of the excess demand at
the end of each trading session. An exogenously given fundamental price discriminates
between a bull market and a bear market. The buying and selling orders of traders change
moving from a bull market to a bear market. Their asymmetric propensity to trade leads
to a discontinuity in the model, with its deterministic skeleton given by a two-dimensional
piecewise linear dynamical system in discrete time. Multiple attractors, such as a stable
fixed point and one or more attracting cycles or cycles and chaotic attractors, appear
through border-collision bifurcations. The multi-stability regions are underlined by means
of two-dimensional bifurcation diagrams, where the border-collision-bifurcation curves are
detected in analytic form at least for basic cycles with symbolic sequences LRn and RLn.
A statistical analysis of the simulated time series of the asset returns, generated by per-
turbing the deterministic dynamics with a random-walk process, indicates that this is one
of the simplest asset pricing models which are able to replicate stylized empirical facts,
such as excess volatility, fat tails and volatility clustering.
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As a starting point, we consider the well-known multiplier-accelerator model of business
cycles introduced by Samuelson [1], which has been reconsidered by many authors and
modified in various directions. The original Samuelson model, besides damped oscillations,
also leads to divergence. To get sustained oscillations, we introduce two different types of
governmental expenditures, and show that resulting two-dimensional continuous piecewise
linear map is able to generate attracting cycles. The map is defined by three different linear
functions in three different partitions of the phase plane, and this peculiarity influences
the overall dynamics of the system. We show that similar to the classical Samuelson
model, there is a unique feasible equilibrium as well as converging oscillations. However,
for certain parameter values, this equilibrium undergoes a center bifurcation [2], and close
to the related bifurcation value the attracting equilibrium coexists with attracting cycles
of different periods. These cycles lose stability via a center bifurcation simultaneously with
the equilibrium. Moreover, we show that attracting cycles of particular type also exist
when the equilibrium becomes an unstable focus. For several families of attracting cycles,
by introducing their symbolic representation, we obtain analytically the boundaries of the
corresponding periodicity regions, associated with border collision bifurcations.
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A particular system of two-dimensional Lotka-Volterra maps, Ta : (x′, y′) = (x(a−x−
y), xy), unfolding a map originally proposed by Sharkovsky for a = 4, is considered. We
show the routes to chaos leading to the dynamics of map T4. For map T4 we show that
even if the stable set of the origin O includes a set dense in an invariant area, the only
homoclinic points of O belong to the x−axis, as well as the cycles leading to heteroclinic
connections, while many internal cycles are snap-back repellers. We also show that a
particular 6-cycle known analytically for map T4 exists, and is known explicitly in closed
form, for any a ∈ (3, 4] appearing at a supercritical Neimark-Sacker bifurcation of the
positive fixed point. Moreover, we show the existence of infinitely many k−cycles on the
x−axis (for any k > 3), which are topological attractors of map Ta for a ∈ (3.96, 4) and
saddle cycles transversely attracting at a = 4.
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We analyze a financial market model with heterogeneous interacting agents where
fundamentalists and chartists are considered. We assume that fundamentalists are homo-
geneous in their trading strategy but heterogeneous in their belief about the asset’s fun-
damental value. On the other hand, we consider that chartists, when they are optimistic
become overconfident and they trade more than when they are pessimistic. Consequently,
our model dynamics are driven by a one-dimensional piecewise-linear continuous map with
three linear branches. We investigate the bifurcation structures in the map’s parameter
space and describe the endogenous fear and greed market dynamics from our asset-pricing
model.
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In this paper, a dynamical Cournot model with R&D spillovers and heterogeneous
products is established. The system is symmetric when the two firms are in same eco-
nomic environment, and it is proved that both the diagonal and the coordinate axes are
the one-dimensional invariant manifolds of the built system. The synchronization be-
haviors between the two firms are verified through calculating the transverse Lyapunov
exponents. The impact of parameters, such as speed of adjustment and R&D efficiency, on
the dynamical behaviors of the system is discussed. The topological structures of basins of
attraction are analyzed through critical curves, and the formation mechanism of ”holes”
in the feasible region is numerically studied. In addition, some global bifurcation are also
shown in this research.

This talk is based on papers [1,2].
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In this work, we discuss how a closed invariant curve can undergo a doubling bifurca-
tion. This question has already been addressed in [1] and [2, 3]. Gardini and Sushko [1], for
instance, have proposed an explanation on how a closed invariant attracting curve, which
appears in 3D smooth map via a Neimark-Sacker bifurcation can be transformed into a
repelling one giving birth to a new attracting closed invariant curve which has doubled
loops. Banerjee et al. [2] and Patra et al. [3] have described several scenarios for doubling
of a closed invariant curve through local and global bifurcation in 3D piecewise smooth
and piecewise linear maps.

We consider a hybrid (continuous-discrete) model comprising a continuous third-order
plant with time delay under impulsive (or pulse-modulated) feedback. Such feedback con-
structs arise in modeling the pulsatile dynamics in endocrine regulation [4],[5]. In [4],
the propagation of the continuous state vector through the firing instants of the impul-
sive feedback was shown to be governed by a piece-wise smooth discrete map with the
dimension depending on the time-delay value. For small and intermediate time delays,
the hybrid model has been previously demonstrated to exhibit a number of complex dy-
namic phenomena, including bistability, quasiperiodicity, and chaos [5]. In our study, we
focus on an additional complexity that arises when the time delay is large (but not longer
than three consecutive inter-impulse intervals) and the state space of the resulting map is
five-dimensional. In this case, a doubling bifurcation of a closed invariant curve occurs.
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The main steps of the scenario we report are as follows. First, a stable fixed point
undergoes a Neimark-Sacker bifurcation leading to the appearance of a stable closed in-
variant curve. Thereafter, the unstable fixed point undergoes a flip bifurcation in the
direction transverse to the 2D manifold including the fixed point and the stable invari-
ant curve. This leads to the creation of another 2D invariant manifold which includes
the stable closed invariant curve and the unstable 2-cycle. Topologically, this manifold
represents a ball-shaped invariant set. Note that at this stage the stable closed invariant
curve continues to exist. Eventually, this curve undergoes a supercritical doubling bifur-
cation causing it to change its stability and leading to a soft appearance of another closed
invariant curve of a double-length around it.

In addition, we discuss a similar scenario leading to a subcritical variant of this bifur-
cation.
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An introduction to the carrying simplex of competitive
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The carrying simplex (CS) is an attracting invariant manifold of codimension one that
is often found in models of competition in ecology. It is a higher dimensional analogue
of the well-known carrying capacity. The CS was introduced for differential equation
population models by Morris Hirsch [1] before later appearing in discrete-time populations
[2, 3, 4, 5, 6, 7]. I will give a gentle introduction to the carrying simplex and its applications
to population dynamics by combining theory, applications and some numerical simulations.
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We establish conditions to ensure global stability of a competitive periodic system from
hypotheses on individual maps. From the conditions developed in [1] for maps defined on
Euclidean spaces Rk

+, of arbitrary dimension k, we now focus on planar competitive maps
of Kolgomorov type in [2]. We show how conditions for global stability for individual
maps will remain invariant under composition and hence establish a globally stable cycle.
Our main theoretical contribution is to show that stability for monotone non-autonomous
periodic maps can be reduced to a problem of global injectivity. We provide analytic
conditions that can be checked and illustrate our results with important competition
models such as the planar Leslie-Gower, Ricker, and Logistic maps.

References
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The first-order Beverton–Holt equation has been used as a classical model of population
dynamics. A second-order generalization of this equation may take the following form:

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . . (1)

Here f is a function that is nondecreasing in both variables, a is a positive constant, and
both initial conditions x0 and x−1 are nonnegative numbers in the domain of f . We will
consider some global results for Eq. (1), particularly in the case when f is a linear or
quadratic multivariate polynomial, as discussed in [1]. Particular attention will be given
to the existence of period-two solutions. The monotonicity of Eq. (1) allows the theory
of cooperative systems to be applied, and thus special cases of this equation will admit
global dynamic scenarios presented in [2].
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We will consider the Discrete Lotka-Volterra Systems can be obtained either by differ-
ent discretizations of continuous Lotka-Volterra systems or directly by modeling problems
with difference equations.ÊWe willÊ come with the discretizations of two dimensional
continuous Lotka-Volterra competitive and cooperative systems. We will also show the
analysis of the global dynamics of these two models which include the local stability anal-
ysis, determining the global stable and unstable manifolds of all fixed points.
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We will present preliminary results about solutions of the following second-order ra-
tional difference equation with quadratic numerator and denominator:

xn+1 =
α+ δxnxn−1

Bxn +Dxnxn−1 + xn−1
,

where the coefficients are positive numbers, and the initial conditions x−1 and x0 are
nonnegative such that the denominator is nonzero.
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Sufficient conditions are given for planar cooperative maps to have the qualitative
global dynamics determined solely on local stability information obtained from fixed and
minimal period-two points. The results are given for a class of strongly cooperative planar
maps of class C1 on an order interval. The results can be easily extended to competitive
maps. The maps are assumed to have a finite number of strongly ordered fixed points, and
also the minimal period-two points are ordered in a sense. Some applications are included.
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In this paper we investigate the asymptotic stability of the following second order
rational difference equation

xn+1 = C +A
xkn
xpn−1

, n = 0, 1, . . .

where A,C are positive real parameters. The initial conditions x−1, x0 are positive real
numbers and 0 < k, p ∈ R. We discuss stability of the center manifold and 1-1 resonance
case for the unique positive equilibrium. We also consider the case of the existence of
Neimark-Sacker bifurcation and give the asymptotic approximation of the invariant curve
near the unique equilibrium point.

References
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The dynamical system theory studies the long term qualitative behavior of systems
evolving in time. One of the important questions is that ”Will the system settle down to
a steady state in the long run?” If so, ”What is the possible steady state?” If not, ”Do
the time averages of the system exist and converge to some limit in the long run?” The
system is called (asymptotically) stable in the former case and ergodic in the latter case.
To some extent, in these two cases, we can observe recurrent behavior of the dynamical
system. However, there is the third possible scenario so-called historic behavior of the
system which causes the non-existence of the time averages. The terminology historic
behavior was coined by D. Ruelle [7] and the problem of describing the persistent family of
dynamical systems with historic behavior was popularized by F. Takens [11, 12]. Recently
[1, 2, 3, 4, 5, 6, 13], this problem was studied under the name of Takens’ Last Problem.
In this talk, we discuss one feature so-called uniformly historic behavior of a discrete
dynamical system which reflects Ruelle’s and Takens’ argument for the non-existence of
the time averages. Uniformly historic behavior will eventually cause the non-existence
of multiply repeated time averages. As an application, we also provide a discrete-time
Kolmogorov system of three-species predator-prey interactions in which uniformly historic
behavior can be observed. This talk is based on the results of the papers [8, 9, 10].
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Department of Mathematics, University of Tuzla, Bosnia and Herzegovina
E-mail: mehmed.nurkanovic@untz.ba
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We investigate the dynamical properties of the following higher order difference equa-
tion

xn+1 = A+B
xn
xrn−k

,

where parameters A, B and the initial values x−k,...,x−1 are arbitrary positive numbers,
and r > 0 and k ∈ {1, 2, ...} are fixed numbers. In some parametric space regions, we
prove that the unique positive equilibrium point’s local asymptotic stability implies global
asymptotic stability.
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I will give an overview of what we know about the local structure of lim←−(G, f), where
G is a finite graph, and f : G → G is a continuous function. Such spaces can be realized
as global attractors of homeomorphisms on R3 (or sometimes R2). The main goal is to
characterize the existence, number, and type of points which are non-solenoidal, i.e. not
locally homeomorphic to a zero dimensional set of arcs. For example, such points are often
(but not always) limit points of the iterates of the critical set of f , while the recurrence
of the critical set of f will often indicate the existence of endpoints. There are still a lot
of open questions which I will discuss.
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Let (Σ, ρ) be the one-sided symbolic space of two symbols and σ the shift on it. We
recall that the dynamical system (Σ, σ) is DC1 or distributional chaotic in the sense of
Schweizer-Smı́tal since it has an uncountable set S of pairs x, y that are of type DC1.
One question is if such S can be included in some of relevants sets in the space. In
particular we prove that if Rσ and Aσ denotes the sets of recurrent and almost periodic,
then S ⊂ (Rσ \Aσ)

Using the notion of DCi − points for i = 1, 2, 3 related to the concentration of distri-
butional chaos around some points from in any phase space, we prove a strongly situation
in (Σ, ρ) in the sense that every point in such space is a DC1 − point.

Such result is not true in the setting of general dynamical systems (X, f). It can be
seen using Furstenberg families approach. There are examples of DC2-spaces which are
not DC1.

There is also strong connection in the setting of general dynamical systems and positive
topological entropy. A general result by Downarowicz states that positive topological
entropy implies the space is DC2. Such relevant result has been proved using properties
on ergodicity of symbolic spaces.

We will provide some comments on the application of above problems in the setting of
interval and triangular maps and recall some pending problems.
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We study the receptive metric entropy for semigroup actions on probability spaces,
inspired by a similar notion of topological entropy introduced by Hofmann and Stoyanov
(Adv Math 115:54–98, 1995). We analyze its basic properties and its relation with the
classical metric entropy. In the case of semigroup actions on compact metric spaces we
compare the receptive metric entropy with the receptive topological entropy looking for a
Variational Principle. With this aim we propose several characterizations of the receptive
topological entropy. Finally we introduce a receptive local metric entropy inspired by a
notion by Bowen generalized in the classical setting of amenable group actions by Zheng
and Chen, and we prove partial versions of the Brin–Katok Formula and the local Vari-
ational Principle. The talk is based on a joint paper [1] with Dikran Dikranjan, Anna
Giordano Bruno, and Luchezar Stoyanov.
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We make a description of the dynamics of a four-step procedure to control the dynamics
of the logistic map introduced in [3]. Some massive calculations are made for computing
the topological entropy with prescribed accuracy. This provides us the parameter regions
where the model has a complicated dynamical behavior. Our computations also show
the dynamic Parrondo’s paradox “simple+simple=complex”, which should be taking into
account to avoid undesirable dynamics.
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The pseudo-arc is besides the arc the only planar continuum (i.e. compact connected
metric space) so that every of its proper subcontinua is homeomorphic to itself [1]. Its
first description appeared in the literature about hundred years ago and due to many of its
remarkable properties it is an object of much interest in several branches of mathematics.
There are results indicating that pseudo-arc appears as a generic continuum in very general
settings. For instance, Bing has proven that in any manifold M of dimension at least 2,
the set of subcontinua homeomorphic to the pseudo-arc is a dense residual subset of the
set of all subcontinua of M (equipped with the Vietoris topology). In this talk I will
present a result which reveals that pseudo-arc is a generic object also in a certain measure
theoretical setting; namely, I will show that the inverse limit of the generic Lebesgue
measure preserving interval map is the pseudo-arc. I will also discuss several implications
of this result.
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The uniform approach to the concept of geometric integrability for discrete dynamical
systems on invariant plane sets is suggested (see [2] - [3]). Geometric and analytic necessary
and sufficient conditions for the geometric integrability of maps on invariant plane sets are
proved [4]. Examples of geometrically integrable maps are given.

The solution of the coexistence problem of periodic points periods for these maps is
given (see [4] - [5]). Obtained results are applied to description of the set of periodic points
(least) periods of geometrically integrable maps with the quotient which is a symmetric
Lorenz map. Here results of [1] are used.
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Given a dynamical system (X,T )—where X is compact metric and T is a self-homeo
on X—its Ellis semigroup is defined as the closure of the collection {Tn : n ∈ Z} in the
space of self-maps on X. The Ellis semigroup is a cornerstone of the algebraic theory
of topological dynamics. Unfortunately, quite often, it is quite nasty. This talk is about
when the Ellis semigroup of Toeplitz shifts is well-behaved (or: tame).

Specifically, we aim at discussing a (very specialised) special case of the following
theorem.

Let (X,T ) be a Toeplitz shift of finite Toeplitz rank. Then (X,T ) is tame if and only
if its maximal equicontinuous factor has only countably many singular points.
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Assume that a sequence x = x0x1x2 . . . is frequency-typical for a finite-valued sta-
tionary stochastic process X. We prove that the function associating to x the entropy
of X is uniformly continuous when one endows the set of all frequency-typical sequences
with the f-bar pseudometric f̄ . As a consequence, we obtain the same result for the d-
bar pseudometric d̄. We also give an alternative proof of the Abramov formula for the
Kolmogorov-Sinai entropy of the induced measure-preserving transformation.

This is joint work with Tomasz Downarowicz and Martha Łącka, see [1].
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Some advances in the study of ω-limit sets of Cournot maps
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A main goal in discrete dynamics is to know the qualitative behaviour of the orbits
generated by a map F ∈ C(X,X), being X a topological space. For interval maps f ∈
C(I, I), I = [0, 1], for each point x ∈ I, it is well-known the structure of its ω-limit
sets, ωf (x), the set of accumulation points of x under f . However, when we increase
the dimension of the space, we only establish partial results about the ω-limit set (for
instance, see [2] and [3] for triangular maps). In this talk, we focus on Cournot maps
F : I2 → I2, F (x, y) = (f2(y), f1(x)), with f1, f2 ∈ C(I, I). These maps appear closely
related to an economical process called the Cournot duopoly (see [5]). We will study the
structure of ω-limit sets of Cournot maps having non-empty interior and we will provide
some advances as well as some open problems in the case of empty interior. The results
that we will present are collected in [1] and [4], where we have obtained a full description
of ω-limit sets with non-empty interior.
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We study the Borel complexity of sets of normal numbers in several numeration sys-
tems. Taking a dynamical point of view, we offer a unified treatment for continued fraction
expansions and base r expansions, and their various generalisations: generalised Lüroth
series expansions and β-expansions. In fact, we consider subshifts over a countable al-
phabet generated by all possible expansions of numbers in [0, 1). Then normal numbers
correspond to generic points of shift-invariant measures. It turns out that for these sub-
shifts the set of generic points for a shift-invariant probability measure is precisely at the
third level of the Borel hierarchy (it is a Π0

3-complete set, meaning that it is a countable
intersection of Fσ-sets, but it is not possible to write it as a countable union of Gδ-sets).
We also solve a problem of Sharkovsky–Sivak on the Borel complexity of the basin of
statistical attraction. The crucial dynamical feature we need is a feeble form of specifica-
tion. All expansions named above generate subshifts with this property. Hence the sets
of normal numbers under consideration are Π0

3-complete.
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[11] Valérie Berthé and Michel Rigo (eds.), Sequences, groups, and number theory, Trends
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In [1], Hero introduced, beside the usual limits sets ω-limit and α-limit, another kind
of limit sets, called the special α-limit set to be as the union of the α-limit sets over all
backward orbits starting at a point. It turns out for interval maps (resp. graph maps),
many interesting properties have been established (see [1], [2], [4]) (resp. [3]). In this talk,
we will present new results related to the structure of special α-limit sets and the continuity
of the special α-limit maps of monotone maps defined on a large class of continua: the
regular curves.
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We investigate flexibility of the entropies (topological and metric) for the class of
piecewise expanding unimodal maps. We show that the only restrictions for the values of
the topological and metric entropies in this class are that both are positive, the topological
entropy is at most log 2, and the metric entropy is not larger than the topological entropy.

In order to have better control on the metric entropy, we work mainly with topologically
mixing piecewise expanding skew tent maps, for which there are only two different slopes.
For those maps, there is an additional restriction that the topological entropy is larger
than log 2

2 .
Moreover, we generalize and give a different interpretation of the Milnor-Thurston

formula connecting the topological entropy and the kneading determinant for unimodal
maps.
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Suppose that f : [0, 1] → [0, 2] is a continuous strictly increasing function which is
differentiable on (0, 1) \F where F is a finite set. Furthermore assume that β := inf f ′ :=
infx∈(0,1)\F f ′(x) > 1. Then there exists a unique c ∈ (0, 1) with f(c) = 1. Set Tfx :=
f(x) − bf(x)c, where byc is the largest integer smaller or equal to y. Such a map Tf is
called an expanding Lorenz map. Note that Tf has a discontinuity at c.

For the case β ≥ 3
√

2 It topological transitivity and topological mixing of Tf is in-
vestigated. In the case β ≥ 3

√
2 and f(0) ≥ 1

β+1 the map Tf is topologically transitive.

Furthermore it is also topologically mixing except in the case f(x) = 3
√

2x + 2+ 3√4−2 3√2
2

for all x ∈ [0, 1].
Better results are obtained in the special case f(x) = βx+α. Here one can completely

describe the set of all (β, α) with 3
√

2 ≤ β ≤ 2 and 0 ≤ α ≤ 2 − β such that Tf is
topologically transitive. With three exceptions all of these topologically transitive maps
are also topologically mixing.

According to Glendinning the map Tf is called locally eventually onto if for every
nonempty open U ⊆ [0, 1] there are open intervals U1, U2 ⊆ U and there are n1, n2 ∈ N
such that Tf

n1 maps U1 homeomorphically to (0, c) and Tf
n2 maps U2 homeomorphically

to (c, 1). One calls Tf renormalizable if there are 0 ≤ u1 < c < u2 ≤ 1 and l, r ∈
N with l + r ≥ 3 such that Tf

l is continuous on (u1, c), Tf
r is continuous on (c, u2),

limx→c− Tf
l x = u2 and limx→c+ Tf

rx = u1. Then an example of a renormalizable and
locally eventually onto expanding Lorenz map is given. Using a condition closely related
to “locally eventually onto” it is shown that this condition is equivalent to Tf is not
renormalizable.
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In this talk, our main concern is how to obtain the existence of nontrivial solution for
the general Fermi-Pasta-Ulam (FPU for short) type lattice dynamical system:

q̈i = Φ′i−1(qi−1 − qi)− Φ′i(qi − qi+1), i ∈ Z,

where qi denotes the co-ordinate of the i-th particle and Φi denotes the potential of the
interaction between the i-th and the (i+ 1)-th particle. Our argument is variational. we
obtain the ground state for FPU model with strongly indefinite case. Of particular interest
is new and quite general approach: Non-Nehari method, which is developed recently . An
interesting outcome from our result is that we can obtain the ground state solution without
strict monotonous condition.
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With the growth of a single species with age structure on an unbounded domain as
a prototype, we derive a delayed temporally discrete reaction-diffusion equation. The
main result is on the existence of traveling wavefront solutions of the equation. We first
transform the problem into that on the existence of fixed points of a mapping. Then by
successfully constructing a pair of upper and lower solutions, we establish the existence of
traveling wavefront by applying the upper-lower solution method.
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Mosquito-borne diseases have posed a serious thread to human heath around the world.
Controlling vector mosquitoes is an effective method to prevent these diseases. In this pa-
per, we incorporate consideration of releasing Wolbachia-infected mosquitoes and spraying
pesticides to aim to reduce wild mosquito populations based on the population replace-
ment model. We present the estimations for the number of wild mosquitoes or infection
density in normal environment, and then discuss how to offset the effect of the heatwave,
which can cause infected mosquitoes to lose Wolbachia-infection.
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Understanding how genes in a single cell respond to dynamically changing signals has
been a central question in stochastic gene transcription research. Recent studies have
generated massive steady-state or snapshot mRNA distribution data of individual cells,
and inferred a large spectrum of kinetic transcription parameters under varying condi-
tions. However, there have been few algorithms to convert these static data into the
temporal variation of kinetic rates. Real-time imaging has been developed to monitor
stochastic transcription processes at the single-cell level, but the immense technicality has
prevented its application to most endogenous loci in mammalian cells. In this article, we
introduced a stochastic gene transcription model with variable kinetic rates induced by
unstable cellular conditions. We approximated the transcription dynamics using easily
obtained steady-state formulas in the model. We tested the approximation against exper-
imental data in both prokaryotic and eukaryotic cells and further solidified the conditions
that guarantee the robustness of the method. The method can be easily implemented to
provide convenient tools for quantifying dynamic kinetics and mechanisms underlying the
widespread static transcription data, and may shed a light on circumventing the limitation
of current bursting data on transcriptional real-time imaging.
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Dynamics of Neural Fields are tools used in neurosciences to understand the activi-
ties generated by large ensembles of neurons. They are also used in networks analysis
and neuroinformatics in particular to model a continuum of neural networks. They are
mathematical models that describe the average behavior of these congregations of neurons,
which are often in large amounts, even in small cortexes of the brain. Therefore, change
of average activity (potential, connectivity,

ring rate, etc) are described using systems of partial different equations. In their
continuous or discrete forms, these systems have a rich array of properties, among which
the existence of nontrivial stationary solutions. In this talk, I will propose a discrete model
for Dynamic Neural Fields based on nearly exact discretization schemes techniques. I will
discuss the mathematical stability analysis of this model based on various types of kernels
and corresponding parameters. Connection to graph theory will be shown. Simulations
will be given for illustration.
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We consider the existence of ground state solutions for a class of discrete nonlinear
Schrödinger equations with a sign-changing potential that converges at infinity and a
nonlinear term being asymptotically linear at infinity. The resulting problem engages two
major difficulties: one is that the associated functional is strongly indefinite and the other
is that the classical methods such as periodic translation technique and compact inclusion
method cannot be employed directly to deal with the lack of compactness of the Cerami
sequence. New techniques are developed to overcome these two major difficulties. This
enables us to establish the existence of a ground state solution and derive a necessary and
sufficient condition for a special case. To the best of our knowledge, this is the first attempt
in the literature on the existence of a ground state solution for the strongly indefinite
problem under no periodicity condition on the bounded potential and the nonlinear term
being asymptotically linear at infinity.

This is a joint work with Profs. Jianshe Yu and Zhan Zhou.
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In this paper, we propose a delayed discrete SIR disease model with saturate inci-
dence rate and extend it to a patchy environment by taking the dispersal of susceptible
individuals from one patch to the other into consideration. For the single-patch model,
we establish the global threshold dynamics by the method of Lyapunov functionals. For
the two-patch model, we show that the global dynamics of the disease-free equilibrium,
two boundary endemic equilibria and the interior endemic equilibrium are determined by
several threshold quantities. We also explore the impacts of the dispersal on the disease
dynamics. Our interesting findings may provide some useful insights on how to properly
manage the dispersal between different regions so that the disease is under control in
involving regions.
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We will present a bifurcation structure for a family of 1D bimodal piecewise linear
maps. This structure corresponds to border collision bifurcations affecting the outermost
partitions of the state space. The case is rather degenerate compared to the general case
usually addressed in the literature. The degeneracy affects both the type of border collision
bifurcations and the number and location of the bifurcation points in the parameter space.
We will present theoretical results yielding a complete description of both the border
collision bifurcations and the bifurcation structure. We will show how these results allow
us to extend partial results previously reported about a problem in the field of economics.

The study was motivated by a problem in the management of ecological populations.
We will show how the results that we will present complete the description of the dynamics
of the combined adaptive limiter control technique (CALC). We will provide numerical
simulations showing potential risks and opportunities associated with the bifurcation struc-
ture from an ecological point of view. Moreover, we will provide examples of applications
of our results to some well-known population models.

The talk is based on joint work with Daniel Franco and Frank Hilker [1, 2].
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In this paper, we develop two discrete models to study how supplemental releases affect
the Wolbachia spread dynamics in cage mosquito populations. The first model focuses on
the case when only infected males are supplementally released at each generation. This
release strategy has been proved to be capable of speeding up the Wolbachia persistence
by suppressing the compatible matings between uninfected individuals. The second model
targets the case when only infected females are released at each generation. For both
models, detailed model formulation, enumeration of the positive equilibria and their sta-
bility analysis are provided. Theoretical results show that the two models can generate
bistable dynamics when there are three positive equilibrium points, semi-stable dynamics
for the case of two positive equilibrium points. And when the positive equilibrium point
is unique, it is globally asymptotically stable. Some numerical simulations are also offered
to get helpful implications on the design of the release strategy.
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In this talk, we consider the propagation dynamics of a general heterogeneous reaction-
diffusion system in a shifting environment. By developing the fixed-point theory for second
order non-autonomous differential system and constructing appropriate upper and lower
solutions, we show there exists a nondecreasing wave front with the speed consistent
with the habitat shifting speed. We further show the uniqueness of forced waves by the
sliding method and some analytical skills. In particular, we obtain the global stability of
forced waves by applying the dynamical systems approach. Moreover, we establish the
spreading speed of the system by appealing to the abstract theory of monotone semiflows.
Applications and numerical simulations are also given to illustrate the analytical results.
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In this article, we study the existence of periodic solutions to second order Hamiltonian
systems (ẍ+V ′(x) = 0, x ∈ RN ). Our goal is twofold. When the nonlinear term satisfies a
strictly monotone condition, we show that, for any T > 0, there exists a T -periodic solution
with minimal period T . When the nonlinear term satisfies a non-decreasing condition,
using a perturbation technique, we prove a similar result. In the latter case, the periodic
solution corresponds to a critical point which minimizes the variational functional on the
Nehari manifold which is not homeomorphic to the unit sphere.
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In this talk, we will introduce a mosquito population suppression model, which in-
cludes the release of Wolbachia-infected males causing incomplete cytoplasmic incom-
patibility(CI). The model consists of two sub-equations switching each other, where the
density-dependent birth rate of wild mosquitoes and incomplete CI effect are considered.
Under the assumption that the waiting period T between two consecutive releases is greater
than the sexual lifespan T̄ of Wolbachia-infected males, we define a release amount thresh-
old c∗, a CI intensity threshold s∗h and a waiting period threshold T ∗ for the release. From
a biological point of view, we assume sh > s∗h. When g∗ < c < c∗, we prove that the origin
E0 is locally asymptotically stable if and only if T < T ∗, and the model admits a unique
globally asymptotically stable T -periodic solution if and only if T ≥ T ∗. When c ≥ c∗,
we show that the origin E0 is globally asymptotically stable if and only if T ≤ T ∗, and
the model has a unique globally asymptotically stable T -periodic solution if and only if
T > T ∗. Some numerical simulations are also provided to illustrate the theoretical results.
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SIT, the radiation-based sterile insect technique (SIT), has successfully suppressed field
populations of several insect pest species, but its effect on mosquito vector control has been
limited. IIT, the related incompatible insect technique (IIT), uses sterilization caused by
the maternally inherited endosymbiotic bacteria Wolbachia——is a promising alternative
way to suppress or even eradicate field mosquito populations. The implementation of
IIT and SIT in Guangzhou enables near elimination of field populations of the world’s
most invasive mosquito species, Aedes albopictus. As collaborators, we take care of the
mathematical modeling part in this project. In this talk, we will introduce the development
of a discrete model for the implementation of IIT-SIT in Guangzhou started from 2015.
This model is totally driven by the data from semi-cage experiments and has been included
in [1]. Our mathematical model accurately described and predicted target population
dynamics in the semi-field cage experiments, and supported the notion that 5:1 over-
flooding ratio of HC to wild-type males is sufficient for effective population suppression
and/or elimination.
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In this talk, I will introduce some results on the positive solutions for some nonlinear
discrete Dirichlet boundary value problems with the mean curvature operator by using
critical point theory. First, some sufficient conditions on the existence of infinitely many
solutions are given. We show that, the suitable oscillating behavior of the nonlinear
term near at the origin and at infinity will lead to the existence of a sequence of pairwise
distinct nontrivial solutions. And by the strong maximum principle, we show that all these
solutions are positive if the nonlinear term is nonnegative at zero. Then, the existence
of at least two positive solutions is established when the nonlinear term is not oscillatory
both at the origin and at infinity. Examples are also given to illustrate our main results
at last.
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In this paper, we propose a mosquito population suppression model which is composed
of two sub-models switching each other. We assume that the releases of sterile mosquitoes
are periodic and impulsive, only sexually active sterile mosquitoes can play a role in the
mosquito population suppression process and the density-dependent survival probability
is included in our model. For the release waiting period T and the release amount c,
we find three thresholds denoted by T ∗, g∗ and c∗ with g∗ < c∗. We prove that the
model generates a unique globally asymptotically stable T -periodic solution when either
c ∈ (g∗, c∗) and T = T ∗, or T > T ∗ for any c > g∗, and the origin is globally or locally
asymptotically stable equilibrium when c ≥ c∗ and T ≥ T ∗, or c ∈ (g∗, c∗) and T < T ∗,
respectively. Finally, we give some numerical examples to illustrate our theoretical results
and make some comparisons with some known results in the literature.
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In this work we study the periodicity, the boundedness of the solutions, and the global
asymptotic stability of the positive equilibrium of the system of p nonlinear difference
equations
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The purpose of this article is to move towards a more complete under- standing of the
qualitative properties of solutions to discrete boundary value prob- lems. In particular,
we introduce and develop sufficient conditions under which the existence of a unique
solution for a third-order difference equation subjected to three-point boundary conditions
is guaranteed. Our contributions are realized in the following ways. First, we construct
the corresponding Green’s function for the problem and formulate some new bounds on its
summation. Second, we ap- ply these properties to the boundary value problem by drawing
on Banach’s fixed point theorem in conjunction with interesting metrics and appropriate
inequalities. We discuss several examples to illustrate the nature of our advancements.
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Mathematical modeling of population dynamics has been attracted by many researchers
over the last few decades. Specially, exponential difference equations have been used to
model the interactions between different kind of population dynamics. Among these pop-
ulation models, Host-Parasitoid interactions play an important role in the ecosystem. One
of the most important achievements in nonlinear and complex dynamics is the discovery
of synchronized chaos. Synchronization happens when two events take place in synchrony
at the same time and when time approaches infinity, the error between solutions of the
first system and its synchronized one vanishes and approaches to zero. The synchroniza-
tion between two dynamical systems is a well known phenomena occurring in Physics,
Biology or Engineering and refers to a phenomenon that may occur when two or more
oscillators are coupled. In this study, we develop a drive-response system by defining a
convex continuous link function which maps the orbits of the drive system into the orbits
of its coupled system and keeps the same qualitative dynamics. We represent an appro-
priate normal form for drive-response system and we obtain the conditions under which
the solutions of drive and response system become completely synchronized. We provided
a new concept in chaos synchronization, called, synchronization threshold, means that
the solutions of drive and response system diverge from each other and lose the complete
synchronization properties when they pass the threshold. We provide one application of
this type of coupling to discover the synchronized cycles of generalized Nicholson-Bailey
model (1)-(2). This model demonstrates a rich cascade of complex dynamics from stable
fixed point to periodic orbits, quasi periodic orbits and chaos. Using the convex contin-
uous link functions (5)-(6), we drive the response system (3)-(4) which inherits all the
complex qualitative dynamics of GNB model (1)-(2) and mimics that certain properties
of the motion which is shared between them.
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where

p = (1− s)x1(n) + s x2(n) (5)

q = (1− s) y1(n) + s y2(n) (6)
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Recurrence sequences have been a central part of number theory for many years. Many
number sequences are defined as linear recurrences, e.g. Fibonacci, Lucas, and Tribonacci
numbers and their generalizations, Fibonacci-Narayana numbers, Pell-Padovan numbers
[1, 2, 3, 4]. The linear recurrences have been extensively studied [5, 6] and solutions have
been obtained basically using generating functions, shift operators, or matrix methods.

The aim of the talk is to briefly review previous results on the topic and present some
new results on solving third order linear recurrence relations. We employ matrix methods
that are useful in solving certain problems stemming from linear recurrence relations, and
in obtaining some identities for special sequences. Using a matrix approach, we develop a
new matrix method for solving linear recurrence relations and present explicit formulae for
the general solution of third order linear homogeneous recurrence relations with variable
coefficients, where the coefficient functions are assumed to be analytic. The solution seems
to be more elegant and simple compared to other works, and involve Fibonacci numbers.
We also obtain a summatory formula for the general solution of the recurrence relation in
a special case. Some particular cases of the recurrence and examples with applications to
combinatorics, especially to number sequences and polynomials, will be considered.

The method can be further generalized for higher order linear homogeneous recurrences
with variable coefficients, discussion of which will conclude the talk.
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In this talk we consider system of nonlinear Dirichlet problems of the form




−ẍ1(t) = f1(t, x1(t), . . . , xm(t)) for t ∈ (0, 1),
...
−ẍm(t) = fm(t, x1(t), . . . , xm(t)) for t ∈ (0, 1),
x1(0) = · · · = xm(0) = x1(1) = · · · = xm(1) = 0

(1)

together with its discretizations




−n2∆2x1[i− 1] = f1

(
i
n , x1[i], . . . , xm[i]

)
for i = 1, . . . , n,

...
−n2∆2xm[i− 1] = fm

(
i
n , x1[i], . . . , xm[i]

)
for i = 1, . . . , n, ,

x1[0] = · · · = xm[0] = x1[n] = · · · = xm[n] = 0

(2)

where ∆2x[i] = x[i+ 2]− 2x[i+ 1] + x[i] and x[i] = x
(
i
n

)
. Following [1] and [2] we obtain

existence and uniqueness of solutions to above problems together with their variational
characterization in the form of a Nash–type equilibrium, see [3] for some other approach.
We also discuss relations between solutions to (1) and (2) when n → ∞ by showing that
solutions to (2) converge to a unique solution to (1). The research will be bases on the
theory of monotone operators supplied with the theory of M-matrices.
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Homogeneous Delayed Systems with Fixed Parameter
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The time delay fact is used in several research axes. Recently, it has been introduced in
the many Mathematical field. In this work we resolve the stability of homogeneous delay
systems based on the Lyapunov Razumikhin function in presence of a varying parameter.
In addition, we show the stability of perturbed time delay systems when nominal part is
homogeneous.
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In this this talk, we give some explicit solutions of the homogeneous linear difference
equations with periodic coefficients. For this purpose, we get around the problem by con-
verting each equation of this class to an equivalent linear difference equation with constant
coefficients. Second, we provide some expressions of the solutions via the combinatorial
and the Binet formulas of linearly recurring sequences.
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A certain class of a host–parasitoid models, where some host are completely free from
parasitism within a spatial refuge is studied. In this paper, we assume that a constant
portion of host population may find a refuge and be safe from attack by parasitoids. We
investigate the effect of the presence of refuge on the local stability and bifurcation of
models. We give the reduction to the normal form and computation of the coefficients
of the Neimark-Sacker bifurcation and the asymptotic approximation of the invariant
curve. Then we apply theory to the three well-known host-parasitoid models, but now
with refuge effect. In one of these models Chenciner bifurcation occurs. By using package
Mathematica, we plot bifurcation diagrams, trajectories and the regions of stability and
instability for each of these models.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

131



A Stochastic Cellular Automaton with Avalanches,
Distributions with Inverse-Power Asymptotics,
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A simple discrete toy model of seismicity in a form of 1-dimensional stochastic cellular
automaton with avalanches, called Random Domino Automaton, is studied analytically.
The defining rules of the automaton mimic general rules of a process of spatially sepa-
rated accumulation of elastic energy coming from Earth’s crust motions and its abrupt
releases. Remarkably, the model proved to generate inverse-power-like distributions with
exponential-like tails without addition of extra constraints, which is fitting well to the up-
per size limitation for maximal possible earthquake conditioned by mechanical strength of
the crust. Thus, motivated by properties of earthquakes’ statistics, we investigate details
of generation of predefined inverse-power distributions with exponential tails.

The raison d’etre for the presentation is the immanent relationship between the model
and the Motzkin numbers recurrence.
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In this work we are concerned with the existence and multiplicity of non-trivial solu-
tions for the following class of Choquard logarithmic equation

(−∆)spu+ |u|p−2u+ (ln | · | ∗ |u|p)|u|p−2u = f(u) in RN ,

where N = sp, s ∈ (0, 1), p > 2, a > 0, λ > 0 and f : R→ R is a continuous nonlinearity
with exponential critical growth. Based on variational techniques, considering f with
critical growth, we obtain the the existence of non-trivial high level and ground state
solutions. Then, considering f with subcritical growth, making use of genus theory, we
prove the existence of infinitely many solutions.
Acknowledgements: The first author was supported by Coordination of Superior Level
Staff Improvement-(CAPES) - Finance Code 001 and São Paulo Research Foundation-
(FAPESP), grant ] 2019/22531-4, while the second author was supported by National
Council for Scientific and Technological Development-(CNPq), grant ] 307061/2018-3 and
FAPESP grant ] 2019/24901-3.
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About a System of Piecewise Linear Difference Equations
with Many Periodic Solutions
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We consider the global behavior of the system of first order piecewise linear difference
equations: {

xn+1 = |xn| − yn − b,
yn+1 = xn − |yn| − d, n = 0, 1, 2, ..., (x0, y0) ∈ R2,

where the parameters b and d are any positive real numbers. We show that there exist
an unstable equilibrium (d;−b). We have a hypothesis that all solutions are evetually
periodic solutions. It has been shown that there are no solutions with period 2, 3 and 4,
but depending on the values of parameters b and d there are solutions with periods 5, 6, 7,
11, 12, 13, 16, 17, 18, 25. We have a hypothesis that there are no solutions with period 8,
9, 10, 14, 15. In general, depending on the values of parameters b and d there are solutions
with many periods, but there also exist no solutions with many periods as well.

System with b = 1 and d = 0 at first was studied in [1]. Some new results about similar
systems of first order piecewise linear difference equations can be found in [2] and [3].
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Difference equations for Restricted lattice path
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Lattice paths are counted by the nature of their step vectors that are confined
to the positive octant. A path can go from any point to infinitely many others
if no further restrictions apply, but each point on the path has only finitely many
predecessors. However, to study lattice paths lying on or over a line having ratio-
nal slope, linear difference equations with non-constant coefficients will be used to
incorporate this restriction. We approach clear-cut solutions of such enumeration
problems through generating functions, and we prove that the identity for generat-
ing functions is based on developing a specific method to compute the number of
restricted lattice paths. We illustrate this method by counting some general lattice
paths.

Let x,m, γ ∈ ZN> , P (ζ) =
∑

06γ6m
cγζ

γ be a polynomial in ζ ∈ CN . The inequality

0 6 γ 6 m means that 0 6 γj 6 mj for all j = 1, . . . , N . We denote Fγ(ζ) =∑
x>γ

f(x)ζx and Ψγ(ζ) =
∑
x>γ

ψ(x)ζx, where the inequality x � γ means, that for at

least one j0 = 1, . . . , N the inequality xj0 < γj0 holds.

We first derive a general identity for the generating functions, We note that this
theorem generalize the identity for generating functions given in [1].

Theorem. The generating function F (ζ) ∈ C[[ζ]] the identity is represented as

F (ζ) =
1

P (ζ)

( ∑

06γ6m
cγζ

γΨm−γ(ζ) +
∑

x>m
P (δ−I)f(x)ζx

)
(1)

holds, where I = (1, . . . , 1).
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In this article, necessary and sufficient conditions for the oscillation of a class of non-
linear second order neutral impulsive difference equations of the form:
{

∆[a(n)∆(x(n) + p(n)x(n− τ))] + q(n)F (x(n− σ)) = 0, n 6= mj , j ∈ N
∆[a(mj − 1)∆(x(mj − 1) + p(mj − 1)x(mj − τ − 1))] + r(mj − 1)F (x(mj − σ − 1)) = 0

have been discussed for p(n) ∈ (−1, 0] with fixed moments of impulsive effect. Here,
we assume that the nonlinear function is either strongly sublinear or strongly superliner.
Some examples are given to illustrate our main results.
Keywords : Oscillation, nonoscillation, neutral difference equation, impulse, Lebesgue’s
dominated convergence theorem.
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In recent years, a certain class of pFq hypergeometric functions with variable param-
eters, called discrete hypergeometric functions, has been investigated. Numerous recent
papers [1, 2, 3, 4, 5] investigate the properties of these functions and their associated spe-
cial functions. In this talk, we will introduce a “discrete Meijer G” function by contour
integration and discuss some of its properties, including how it can be thought of as a Mei-
jer G function with variable parameters and its relation to the discrete hypergeometric
series. This research was funded by the West Virginia NASA Space Grant Consortium.
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In this first part, we start by recalling important concepts in Linear Dynamics such
as transitivity, mixing, hiperciclicity, Li-Yorke chaos, hyperbolicity and shadowing. We
provide an overview of these basic concepts and of some important tools, and of the main
results in the literature concerning these fundamental topics in this research field, Linear
Dynamics, which lies in between Dynamical Systems and Operator Theory, and has had
a flurry of intriguing results, in particular, in the last 30 years. We introduce dissipative
systems with the bounded distortion property, where our results for operators on Lp spaces
are obtained.
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While the forward trajectory of a point in a discrete dynamical system is always unique,
in general a point has infinitely many backward trajectories. The union of the limit points
of all backward trajectories through x was called by M. Hero [1] the “special α-limit”
(sα-limit for short) of x.

This concept plays a fundamental role in the construction of the graph of a dynamical
system given by C. Conley [2], extending a seminal idea by S. Smale [3]: the nodes of the
graph are the equivalence classes of all chain-recurrent points of the system and there is
an edge from node A to node B if there is a point that asymptotes backward to A and
forward to B. In a recent work with Jim Yorke [4], we studied the graph of the logistic
map (more generally, of any S-unimodal map) and proved that there is a linear hierarchy
between all nodes: nodes can be sorted as N0, N1, . . . , Np, where Np is the unique attractor
and p is possibly infinite, so that arbitrarily close to each node Ni there are points that
asymptote to Nj for each j > i. This behavior is not specific of S-unimodal mamps bvt
appears also in higher-dimensional systems [5].

In this talk we show that, correspondingly to the hierarchy above, there is a hierarchy
of sα-limits of a S-unimodal map.
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In this study, traveling wave solutions are produced by using an improved Bernoulli
sub- equation function method, considering a partial differential equation with strong non-
linearity. The obtained solutions are examined with exact solution. 2D and 3D graphics
of the obtained solution functions are drawn by determining the appropriate parameters.
This technique appears as a suitable, applicable and efficient method to search for the
exact solutions of nonlinear partial differential equations.
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In this work we going to study the properties of some chaotic properties via Furstenberg
families, specially using other levels of Blocks families. Futhermore, We are going to relate
the Li Yorke and Distribution chaos levels through the existence of certain categories of
block families, which contain IP families and Weakly Thick families. Then, we are going
to demonstrate that there is equivalence between chaotic localities in time actions that are
closed under addition and multiplication, showing at the end some applications in types
of shift systems from an ergodic point of view.
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A class of stochastic functional differential equations

dx(t) = a(xt, t)dt+ b(xt, t)dw(t), t ∈ [t0, T ], (1)

with the given initial condition xt0 = η = {η(θ) |θ ∈ [−τ, 0]} on a finite time interval is
considered. In this paper, based on [1], the polynomial conditions are considered, instead
of the usual assumptions that both the drift and diffusion coefficient satisfy the Lipschitz
and linear growth conditions, as well as the assumption of the moment boundedness of the
solution to the initial equation. An approximate equation is considered for any equidistant
partition of the time interval. That equation has coefficients that are Taylor expansions
of the coefficients of the initial equation. Taylor approximations require Fréchet deriva-
tives since the coefficients of the initial equation are functionals. The solutions of thusly
constructed equations converge in the Lp sense and almost surely towards the solution
of Eq. (1) and the rate of the convergence is presented if those solutions satisfy some
moment bounds. The rate of convergence increases if the orders of Taylor approximations
for the drift and diffusion coefficient increase simultaneously. An example that illustrates
the theoretical results and contains the proof of the existence, uniqueness and moment
boundedness of the approximate solution is presented.
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The half-linear q-difference equation

Dq(p(t)Φ(Dq(x(t)))) + r(t)Φ(x(qt)) = 0, t ∈ qN0 = {qn : n ∈ N0}, q > 1, (1)

where Φ(x) = |x|αsgnx, α > 0, p : qN0 → (0,∞), r : qN0 → R, will be analyzed in
the framework of q-regular variation. The theory of q-Karamata functions will be used
to establish necessary and sufficient conditions for the existence of q-regularly varying
solutions under the assumption that the coefficient p of Equation (1) is q-regularly varying
function and the coefficient r is an arbitrary function of eventually one sign. Moreover,
in the case when r is eventually negative function, under the certain conditions, it will be
examined whether all eventually positive solutions of Equation (1) are q-regularly varying.
Furthermore, since Equation (1) can be transformed to the half-linear difference equation

∆(a(n)Φ(∆(y(n)))) + b(n)Φ(y(n+ 1)) = 0, n ∈ N0,

where

a(n) =
p(qn)

((q − 1)qn)α
and b(n) = (q − 1)qnr(qn), n ∈ N0,

using generalized regularly varying sequences, obtained results are applied to the half-
linear difference equation case.
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Let X and Y be two arbitrary Banach spaces. Moreover, let (An)n∈Z be a sequence
of bounded and invertible operators on X, fn : X × Y → X, n ∈ Z a sequence of maps
Lipschitz in the first variable and gn : Y → Y , n ∈ Z an arbitrary sequence of homeomor-
phisms. We consider the associated coupled system given by

xn+1 = Anxn + fn(xn, yn), yn+1 = gn(yn), n ∈ Z. (1)

In this talk, we will discuss sufficient conditions under which (1) is topologically equivalent
to the uncoupled system

xn+1 = Anxn, yn+1 = gn(yn), n ∈ Z.

The talk will be based on the results obtained in [1].
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In the presentation I will focuse on the a new concept of antiprincipal solutions at
infinity for symplectic systems on time scales. This concept complements the earlier
notion of principal solutions at infinity for these systems by Hilscher and and Šepitka
(2016). In the article [1] created together with Hilscher we derive main properties of
antiprincipal solutions at infinity, including their existence for all ranks in a given range
and a construction from a certain minimal antiprincipal solution at infinity. We apply our
new theory of antiprincipal solutions at infinity in the study of principal solutions, and in
particular in the Reid construction of the minimal principal solution at infinity. In this
work we do not assume any normality condition on the system, and we unify and extend to
arbitrary time scales the theory of antiprincipal solutions at infinity of linear Hamiltonian
differential systems and the theory of dominant solutions at infinity of symplectic difference
systems.

Further I continue this investigation of the properties of recently introduced concept
of antiprincipal solutions of symplectic system at infinity on time scales.
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We explore the dynamics of a certain class of Beddington host-parasitoid models, where
in each generation a constant portion of hosts are safe from attack by parasitoids, and
the Ricker equation governs the host population. Using the intrinsic growth rate of the
host population that is not safe from parasitoids as a bifurcation parameter, we prove
that the system can either undergo a period-doubling or a Neimark–Sacker bifurcation
when the unique interior steady state loses its stability. Then we apply the new theory to
the following well-known cases: May’s model, (S) model, Hassel and Varley (HV)-model,
parasitoid-parasitoid (PP) model and (H) model. We use numerical simulations to confirm
our theoretical results.
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Anisotropic Sobolev Embeddings and the Speed of
Propagation for Parabolic Equations

FATMA GAMZE DUZGUN

Department of Mathematics, Hacettepe University, Ankara, Turkey
E-mail: gamzeduz@hacettepe.edu.tr

Presentation type: Contributed Talk

We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of or-
thotropic type and study the spatial localization of solutions. Assuming that the initial
datum is localized with respect to a coordinate having slow diffusion rate, we bound the
corresponding directional velocity of the support along the flow. The expansion rate is
shown to be optimal for large times.

References

[1] Fatma Gamze Duzgun, Sunra Mosconi, Vincenzo Vespri Anisotropic Sobolev Embed-
dings and the Speed of Propagation for Parabolic Equations, Journal of Evolution Equa-
tions 19 (2019), 845 - 882.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

148



Robust stability of stochastic dynamical systems with
varying delays

Issam El Hamdi

LISTI, ENSA, Ibn Zohr University, PO Box 1136, Agadir, Morocco
E-mail: issam2000elhamdi@gmail.com

Hassane Bouzahir

LISTI, ENSA, Ibn Zohr University, PO Box 1136, Agadir, Morocco
E-mail: h.bouzahir@uiz.ac.ma

Presentation type: Contributed Talk

This paper characterizes the robust second-moment stability of stochastic linear sys-
tems subject to varying delays. The delays assume a particular form suitable to represent
packet loss in networked control systems, under the zero-order hold feedback. The pro-
posed robust stability condition requires checking the spectral radius of an appropriate
matrix that hinges upon a polytope. Due to this polytope’s dependence, checking that
spectral radius is difficult from the numerical viewpoint. As an attempt to solve the prob-
lem, we convert the polytope-based condition into a randomized approach. Namely, we
present probability bounds that help us certificate the robust second-moment stability
under high probability. A real-time electronic application illustrates the potential benefits
of our approach.
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In this work, by using the forward Euler’s method we study the dynamics of discrete-
time Rayleigh-Duffing oscillator. We apply the center manifold theorem to prove that the
system has Hopf bifurcation and flip bifurcation. It is shown that the system undergoes
chaotic behavior in the sense of Marotto’s definition. Finally, we compute numerically the
Lyapunov exponents to demonstrate sensitivity to initial conditions and chaotic behavior.
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Impulsive difference equations are presented by showing the existence of periodic or
bounded orbits, asymptotic behavior and chaos. Impulses are used to control the dynamics
of the autonomous difference equations. Several examples are given including a model of
supply and demand when Li-Yorke chaos is shown.
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We consider multi-parameter continuous and discrete dynamical systems and carry
out their global bifurcation analysis [1]. First, using new bifurcational and topological
methods, we solve Hilbert’s Sixteenth Problem on the maximum number of limit cycles and
their distribution for the 2D Holling-type quartic dynamical system [2], Leslie–Gower po-
pulation dynamics system [3], Kukles cubic-linear system [4] and Euler–Lagrange–Liénard
polynomial system [5]. Then, applying a similar approach, we study 3D polynomial sys-
tems and complete the strange attractor bifurcation scenario for Lorenz-type systems con-
necting globally the homoclinic, period-doubling, Andronov–Shilnikov, and period-halving
bifurcations of their limit cycles which is related to Smale’s Fourteenth Problem [6]. We dis-
cuss also how to apply our approach for studying global limit cycle bifurcations of multi-
parameter discrete dynamical systems which model the population dynamics in biomedical
and ecological systems.
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Let H be a real, separable Hilbert space and let J : Y → R be Gateaux differentiable
such that J

′
: Y → Y ∗ is demicontinuous and satisfies condition (S). Let 0 < r < R. We

consider nonlinear equations of the following type

J
′
(u) = 0 for u ∈ Y, r ≤ ‖u‖ ≤ R (1)

under assumptions that J is bounded from below on r ≤ ‖u‖ ≤ R and

J
′
(u) + λu 6= 0 for ‖u‖ = r and all λ > 0,

J
′
(u)− βu 6= 0 for ‖u‖ = R and all β > 0.

Using the Ekeland Variational Principle and the Karush-Kuhn-Tucker Theorem we
prove that there is some u0 such that (1) holds. The applications to discrete and continuous
problems are given.
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In this talk we introduce the concept for cubic splines, cubic σ-splines, Hermite
cubic splines and Hermite cubic σ-splines. They are deducted some of their proper-
ties. The talk is provided with applications of the defined splines on time scales in
the theory of dynamic equations on time scales.
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Let R be a commutative ring with identity and a, b, fn ∈ R (n ∈ N0). Consider the
difference equation bxn+1 = axn + fn, n ∈ N0 over R. If b is non-invertible, this equation
is said to be implicit. Such equation may have no solutions over the ring R. For example,
there is no sequence of integers such that satisfies the equation 3xn+1 = xn + 1. The
following results describes classes of rings over that such an equation has a solution.

Theorem 1. Let R be a Noetherian local ring. Then for any f ∈ R and any non-
invertible b ∈ R the equation bxn+1 = xn + f has a unique solution.

Theorem 2. Let R be a finite ring. Then for any b ∈ R and fn ∈ R the equation
bxn+1 = xn + fn has a solution over R.

Over rings with a more complex structure we studied wider class of equations. Suppose
R is a valuation ring of a complete field F with a non-Archimedean valuation | · |.

Theorem 3. Suppose aj ∈ R, |aj | < |a0| = 1 for 1 ≤ j ≤ m, and fn ∈ R. Then the
equation amxn+m + am−1xn+m−1 + . . .+ a0xn = fn, n ∈ N0 has a unique solution over R.

For the first and second order equation we can write down the explicit form of the
solution. For instance, the solution of the equation a2xn+2 + a1xn+1 + a0xn = fn has the
form of the series converges with respect to the non-Archimedean valuation:

xn =

∞∑

k=0

(−1)k+1

[ k
2

]∑

j=0

(−1)j
(
k − j
j

)
ak−2j

1 aj2a
−k+j−1
0 fn+k.

Specific examples of rings having the structure described above are the ring of p-adic
integers and ring of formal power series. Thus this result is useful for finding a solution
over the ring of integers and over the ring of polynomials.

The research was supported by the National Research Foundation of Ukraine funded by
Ukrainian State budget in frames of project 2020.02/0096 “Operators in infinite-dimensional
spaces: the interplay between geometry, algebra and topology”

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

155



A Variational Framework for a Second Order Discrete
Boundary Value Problem with Mixed Periodic Boundary

Conditions

John R. Graef

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN
37403, USA

E-mail: John-Graef@utc.edu

Lingju Kong

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN
37403, USA

E-mail: Lingju-Kong@utc.edu

Min Wang

Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA
E-mail: min.wang@kennesaw.edu

Presentation type: Contributed Talk

Consider the second order difference equation

−∆(r(t− 1)∆u(t− 1)) = f(t, u(t)), t ∈ [1, N ]Z, (1)

together with the mixed periodic boundary conditions (BC)

u(0) = u(N), r(0)∆u(0) = −r(N)∆u(N). (2)

In order to study the existence of solutions, a variational framework consisting of an
appropriate Banach space and an associated functional is constructed. This is needed
to handle the asymmetry that occurs at the boundaries of the domain generated by the
mixed periodic boundary conditions in (2). This new framework allows the study of the
solutions of BVP (1), (2) defined in the standard way, i.e., defined on [1, N ]Z . The proofs
make use of critical point theory. The approach used here may be combined with other
results from critical point theory to lead to new results.

In addition to existence results, the problem of identifying a particular solution of
the BVP that satisfies a pre-determined set of conditions is considered. It appears that
this type of problem has not been considered for BVPs for either ordinary differential or
difference equations.
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The global asymptotic stability of the unique positive equilibrium point and the rate
of convergence of positive solutions of the system of two recursive sequences has been
studied recently. Here we generalize this study to the system of p recursive sequences

x
(j)
n+1 = A + (x

(j+1)mod(p)
n−m /x

(j+1)mod(p)
n ), n = 0, 1, . . . , m, p ∈ N, where A ∈ (0,+∞), x

(j)
−i

are arbitrary positive numbers for i = 1, 2, . . . ,m and j = 1, 2, . . . , p. We also give some
numerical examples to demonstrate the effectiveness of the results obtained.
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[5] M. Gümüş, The global asymptotic stability of a system of difference equations, J.
Difference Equ. Appl., 24(6) (2018), 976-991.

[6] D. Zhang, W. Ji, L.Wang, and X. Li, On the symmetrical system of rational difference
equation xn+1 = A+ yn−k/yn, yn+1 = A+ xn−k/xn, Appl. Math., 4 (2013), 834–837.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

157



On generalized Archimedes-Borchardt algorithm

Witold Jarczyk

Institute of Mathematics, University of Zielona Góra, Poland
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This is a joint work with Justyna Jarczyk. We investigate convergence and invariance
properties of the generalized Archimedes-Borchardt algorithm. The main tool is reducing
the problem to an appropriate Gauss iteration process.
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Criticality was defined for second-order linear difference equations in [2] through spe-
cific positive solutions u+ and u− and was later extended by other authors for the even-
order linear difference equations in [1]. There is a large space for further research in this
field as there are not that many results about critical equations. Nevertheless, new results
will soon appear in [4]. We show connections between criticality and given coefficients an,
bn of the studied equation

anyn−1 + bnyn + anyn+1 = 0

under different assumptions. Special attention is paid to the sequences c+ and c− which
appear in the definition of the solutions u+ and u−. For example, we show that our
equations are critical if and only if it holds bn = 1

c−n
+ 1

c+n
. Furthermore, we develop

conditions under which we can asymptotically link sequences c±n and coefficient an as
limn→∞ c± = − limn→∞ 1

an
, which is a natural generalization of a known result.

Other results are obtained for fourth-order equations, where we generalize the approach
of articles [1, 3] to find that equation

−44yn +4 (rn+14yn+1) = 0, n ∈ Z,

is always 1-critical for a positive sequence rn.
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Abstract: In this work, we discuss a few qualitative properties of the two-term linear
nabla fractional difference equation

(
∇ν

ρ(a)u
)
(t) = λu(t − 1), t ∈ Na+1,

where a, ν, λ ∈ R, 0 < ν < 1, ρ(a) = a − 1, ∇ν
ρ(a)u denotes the ν-th Riemann–Liouville

nabla fractional difference of u, and Na+1 = {a + 1, a + 2, · · · }. For this purpose, first
we transform this nabla fractional difference equation into a Volterra difference equation
of convolution-type. Using the well established qualitative theory of Volterra difference
equations, we obtain sufficient conditions on boundedness, stability and asymptotic be-
haviour of solutions of the nabla fractional difference equation. Finally, we compare these
properties with that of the two-term linear difference equation

(
∇u

)
(t) = λu(t − 1), t ∈ Na+1.
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In this talk, I will present some interactive tools dealing with the stability for one- and
two-dimensional discrete systems with the computer algebra system SageMath. These
tools give information, geometrically, about the stability of the systems with parameters
as well as the possible effects and types of bifurcations (if any) caused by the parameters.
Using the tools, one can generate the basin of attraction of the fixed and periodic points,
and also the stability regions in parameter space. This work is part of the book [4].
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Positive solutions of the nonlinear difference equation

∆(pn|∆xn|α−1∆xn) = qn|xn+1|β−1xn+1, n ≥ 1, α > β > 0,

are studied under the assumption that p, q are regularly varying sequences. It is shown
that with the help of discrete regular variation, complete information can be acquired
about the existence of regularly varying solutions of this equation and their accurate
asymptotic behavior at infinity.
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Delta and nabla Hardy-Copson type dynamic inequalities are extended for the different
exponents. The obtained inequalities are not only novel but also unify the continuous and
discrete cases for which different exponents have not been considered so far. Moreover
these inequalities are used to find necessary and sufficient conditions for the nonoscillation
of the related half linear dynamic equations.
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Although diamond alpha derivative and integral is constructed by convex linear com-
binations of delta and nabla ones, respectively, it is not straightforward to unify some
well-known inequalities by diamond alpha calculus due to the lack of some important
theorems. We establish diamond-alpha unification of delta and nabla Hardy-Copson type
dynamic inequalities by developing a new method. Then we extend these inequalities for
the different exponents. Moreover the obtained inequalities are not only novel but also
unify the delta, nabla, continuous and discrete cases for which different exponents have
not been considered so far.
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The Cox-Ingersoll-Ross (CIR) process is described by an Itô-type stochastic differential
equation with a square-root diffusion and appears frequently in financial applications, for
example in the pricing of interest rate derivatives. Solutions are almost surely (a.s.) non-
negative; in fact under an additional parameter constraint called Feller’s condition they are
known to be a.s. positive. For Monte Carlo estimates, exact sampling from the conditional
distribution is possible but computationally inefficient, and potentially restrictive if the
innovating Brownian motion is correlated with that of another process.

A substantial literature has developed on the efficient numerical approximation of
solutions. The challenge for numerical methods is to control error in spite of the unbounded
gradient of the diffusion near zero, and to preserve the domain invariance of sampled
trajectories. Indeed, Hefter and Jentzen [1], presented a bound on the strong convergence
order of a class of uniform discretisations that includes those of Euler and Milstein type.
This bound implies that CIR cannot be thus solved in a reasonable computational time if
the intensity of the square-root diffusion is sufficiently dominant.

We propose a domain invariant numerical method for CIR based upon a suitable
transform followed by a splitting. Moment bounds and strong L2 and L1 convergence
rates of the scheme are available in a restricted parameter regime, and we compare the
numerical performance to other recently developed methods. We can extend this method
to all parameter values by introducing a non-uniform, adaptive mesh and “softening” the
boundary at zero. Preliminary numerical evidence suggests that this modified approach
yields strong convergence with nonzero rate, even for high intensity noise.
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In this paper, we introduce the following left-right nabla fractional discrete boundary-
value problem

{
T+1∇αk (k∇α0 (u(k))) + k∇α0

(
T+1∇αk (u(k))

)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where 0 < α < 1 and 0∇αk is the left nabla discrete fractional difference and k∇αT+1 is the
right nabla discrete fractional difference and f : [1, T ]N0×R→ R is a continuous function,
λ > 0 is a parameter. We present the matrix structure form of this equation. Several
examples are included to illustrate with α = 1/2 and α = 3/4.
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In this work we solve the following system of difference equations

x
(j)
n+1 =

Fm+2 + Fm+1x
((j+1)mod(p))
n−k

Fm+3 + Fm+2x
((j+1)mod(p))
n−k

, n,m, p, k ∈ N0, j = 1, p,

where (Fn)+∞
n=0 is the Fibonacci sequence. We give a representation of its general solution

in terms of Fibonacci numbers and the initial values. Some theoretical justification related
to the representation for the general solution are also given.
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Oscillation criteria for nonlinear difference equations with
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The purpose of this study is to analyze the first order nonlinear advanced difference
equation

∇x(n)− p(n)f(x(τ(n))) = 0, n = 0, 1, ...,

where (p(n)) is a sequence of positive real numbers and (τ(n)) is not necessarily monotone
argument. Also, some sufficient conditions for the oscillatory solutions of this equation
are established. Finally, an example is given to demonstrate the results.
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In the present study we investigate the effect of flow of non-spherical nanoparticles through
human airways and its adverse effect on the lower part of human lung generations under the
periodic permeability [1, 2] of airways and oscillatory boundary conditions. An appropriate
one-dimensional unsteady momentum equation in the cylindrical polar coordinate system
is used by incorporating the idea of the shape factor of needle prolate nanoparticles.
Filtration efficiency [3] of the lung from generations 5-16 is calculated using appropriate
biofilter model. The effect of various physical parameters, such as mean permeability of
media (K0), the aspect ratio of particle (β), the orientation of particle with respect to
the flow stream, Reynolds number (Re), and frequency of oscillation (f) are analyzed on
the flow dynamics of air, particles and filtration efficiency of lung. Results show that the
aspect ratio of a particle causes an increment in drag force and decrement in pressure
gradient; and for parallel orientation velocity of particles increases than perpendicular
orientation. Also, we found that the filtration efficiency of lung varies inversely with the
value of mean permeability.

References

[1] A.M. Siddiqui, S. Siddiqa, A.S. Naqvi, Effect of constant wall permeability and porous
media on the creeping flow through round vessel, J. Appl. Comput. Math. 7 (2018),
1-6.

[2] K.D. Singh, G.N. Verma, Three-dimensional oscillatory flow through a porous medium
with periodic permeability, J. Appl. Math. Mech. 75 (1995), 599-604.

[3] A. Saini, V.K. Katiyar, Pratibha, Numerical simulation of gas flow through a biofilter
in lung tissues, World J. Model. Simul. 11 (2015), 33-42.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

171



Ostrowski-Grüss type inequality with application to the
weight twopoint Radau integral formula

Sanja Kovač
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Radau type integral formulae are numerical approximation formulae of semi-closed
type and have many applications in matheatical analysis. Recently there have been proven
some new results about error bounds of quadrature integral formulas motivated by famous
Grüss and Ostrowski inequalities([1]). The aim of our paper is to extend these results and
give some new error estimation to the weight case and to show applications to the weight
Radau twopoint integral formulas ([2].
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We consider a system on a time scale

x∆ = f(t, x), x ∈ Rn, t ∈ T (1)

where the time scale T is an unbounded closed subset of R.
Definition. We say that the system (1) is structurally stable if for any ε > 0 there exists
a δ > 0 such that for any g(t, x) : |g(t, x)| < δ, |g′x(t, x)| < δ and any t0 ∈ T there is a
homeomorphism h of the space Rn such that

|ϕf (t, x0)− ϕf+g(t, h(x0))| < ε

for any x0 ∈ Rn, t ∈ T. Here ϕf (t, x0) and ϕf+g(x0) are solutions of systems (1) and

x∆ = f(t, x) + g(t, x) (2)

with initial conditions x(t0) = x0.
For systems of ordinary differential equations, conditions for global structural stability

were obtained in [1], see also [2]. It was proved that a system is structurally stable if its
linearizations are uniformly hyperbolic on families of segments.

We formulate and prove an analog of this statement for time scale systems. Although
the result is very similar to that for ordinary differential equations, the proof for the time
scale case is significantly different. We need to use specific approaches of time scale systems
theory [3]. Remarkably, the classical results for structural stability of autonomous systems
of ODEs, obtained by C.Robinson [4], are, in general, non-applicable for systems on time
scales (even for the autonomous ones).
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We describe a method of construction of continuous orientation preserving iterative
roots of a Brouwer homeomorphism for which there exists a family of pairwise disjoint
invariant lines covering the plane. To obtain such roots we use a matching property
for invariant lines contained in the boundaries of maximal parallelizable regions of the
considered Brouwer homeomorphism. This property allows an iterative root defined on a
parallelizable region to be extended on the boundary of this region which is a key step in
the presented construction.
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In this second part, we present some of our recent results. In particular, we focus
on the relations between generalized hyperbolicity and shadowing. As it is well-known,
hyperbolicity implies shadowing but the equivalence is not always true. Therefore, the
notion of generalized hyperbolicity is an important bridge between hyperbolicity and the
shadowing. We characterize the shadowing property for composition operators on dissipa-
tive systems with the bounded distortion property, and in particular, we show that, in this
contest, the shadowing property and the generalized hyperbolicity coincide. We provide
tools for the construction of examples, using distributions.
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For diseases in which vaccination is not compulsory, individuals take into account dif-
ferent aspects when deciding between to vaccinate or not. Namely, the decision depends
on the morbidity risks from both vaccination and infection, and also depends on the prob-
ability of being infected, which varies with the course of the disease and the decisions of
all other individuals. In this work, we study the evolution of the vaccination strategies de-
pending upon the morbidity risks and upon the parameters of the epidemic model. We give
a special emphasis to the possibility of reinfection. In [1], Martins and Pinto introduced
the evolutionary vaccination dynamics for a homogeneous vaccination strategy of the pop-
ulation, where the individuals change their strategies over time, such that their payoffs
increase. Here, we will also consider the dynamical evolution of the perceived morbidity
risks and we analyze the changes provoked on the population vaccination strategy.

Acknowledgements: The authors thank the financial support of LIAAD-INESC TEC
and FCT-Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) within the project PTDC/MAT-APL/31753/2017.
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In a bounded rational game where players cannot be as super-rational as in Kalai and
Leher (1993), are there simple adaptive heuristics or rules that can be used to secure
convergence to Nash equilibria? Robinson (1951) showed that for certain types of games,
such rules exist. Nevertheless, the types of games to which they apply are pretty restric-
tive. Following Hart and Mas-Colell (2003) terminology, are there games with uncoupled
deterministic dynamics in discrete time that converge to Nash equilibrium or not? Young
(2009) argues that if an adaptive learning rule follows three conditions – (i) it is uncoupled,
(ii) each player’s choice of action depends solely on the frequency distribution of past play,
and (iii) each player’s choice of action, conditional on the state, is deterministic – no such
rule leads the players’ behavior to converge to the Nash equilibrium. This paper shows
that there are simple adaptive rules that secure convergence, in fact, fast convergence, in a
fully deterministic and uncoupled game. We use the Cournot model with nonlinear costs
and incomplete information for this purpose and illustrate that this convergence can be
achieved without any coordination of the players’ actions.
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Our main goal is to analyze a standard macroeconomic model with occasionally binding
constraints (OBCs) in this paper. This type of problem is quite ubiquitous in macroe-
conomics but is usually ignored for high computational demands. For example, we can
find OBCs in models with a zero lower bound constraint on interest rates, in models with
occasionally binding collateral constraints, downward nominal wage rigidities, irreversible
investment, irreversible natural resources, or discrete decision making in Markov decision
processes.

In particular, we will focus on discussing the New Keynesian Model with a typical
Taylor Rule on the nominal short-term interest rate. In this framework, we can consider
two different states (a ”normal” state and the ”Zero Lower Bound” on interest rates),
modeled according to a Markov process. The solution is obtained by the method of time
iteration and follows the approaches recently presented by Sunakawa and Hirose (2019)
and Rendahl (2017).
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In the present study, a new method is proposed to obtain a solution of nonlinear delay
equations (NDDDEs) with initial and boundary conditions. The presented method is a
combination of differential transform and partial ordinary Bell polynomials. Differential
transform is based on Taylor series and to deal with nonlinearity Bell polynomials are
applied. The applications of the method have been illustrated through some test problems.
Convergence results are presented. The error estimate is discussed too. The presented
method is not only reliable in obtaining the solution of such problems in series form with
high accuracy, but it also guarantees considerable saving of calculation volume and time as
compared to other methods. The numerical calculations are performed using Mathematica
software version 11.
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In the framework of finite difference methods, semilinear singularly perturbed problems
have been widely solved on non-uniform grids. In this paper, we propose a fitted operator
finite difference method which uses uniform grids. We first use the quasilinearization
technique to transform the semilinear singularly perturbed equation into a system of linear
equations. The system is then solved via a fitted operator method. We show that error
estimates for the proposed method are independent of the perturbation parameter. Also,
we carry out numerical illustrations to confirm the robustness of the method.
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This paper addresses the problem of leakage effects on Mittag-Leffler synchronization
of T-S fuzzy fractional-order discrete-time complex-valued molecular models of mRNA and
protein in regulatory mechanisms with two kinds of regulation functions, respectively. A
novel approach is proposed to effectively deal with the joint effects from leakage delay and
time varying delay for the class of T-S fuzzy fractional-order discrete-time complex-valued
genetic regulatory networks (FDTCVGRNs) under consideration. By employing Lyapunov
function method and Caputo fractional difference inequalities, several effective conditions
according to algebraic inequality and complex-valued linear matrix inequalities (LMIs) are
deduced to guarantee the Mittag-Leffler synchronization of the addressed FDTCVGRNs.
Moreover, Mittag-Leffler synchronization problem of the nonlinear regulation function in
complex-valued molecular models to study on the basis of genernal regulation function and
linear threshold one. Compared with existing results in the literature, we also show that
our results are less conservative than existing ones with these illustrative FDTCVGRNs.
Finally, the simulation results of two numerical example are demonstrated, which explains
the validity of the proposed method.
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In the last decades the interest on the behaviour of the solutions of max-type difference
equations has rapidly grown. In this sense, we can find a wide range of work in the
literature dealing with the periodic character of its solutions, boundedness, convergence,
stability... (for instance, see the monograph [4]).

In the present talk, we consider the max-type equation

xn+4 = max{xn+3, xn+2, xn+1, 0} − xn,

with arbitrary real initial conditions. We describe completely its set of periods Per(F4),
as well as its associate periodic orbits. Moreover, we prove that there exists a natural
number N /∈ Per(F4) for which

{N +m : m ≥ 1,m ∈ N} ⊂ Per(F4).
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This talk is devoted to the study of the existence of solutions to second-order nonlinear
boundary value problem on the half-line of the form

{
∆ (a(n)∆x(n)) = f(n, x(n),∆x(n)), n ∈ N ∪ {0},
αx(0) + βa(0)∆x(0) = 0, x(∞) = d,

where d, α, β ∈ R, α2 + β2 > 0. To achieve our goal, we use Schauder’s fixed point theo-
rem and the perturbation technique for Fredholm operator of index zero. The necessary
condition for the existence of solutions to the considered problem are presented, too.
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The talk considers the system composed of finite number of homogeneous dynamical
systems (which can be interpreted as individuals or autonomous systems), so-called agents,
which are (locally) communicating, interacting and cooperating with each other. For
such multi-agent systems, the control strategies can target different objectives according
to the level of cooperativeness. We investigate the problem of optimal coverage of a
constrained predetermined target area, ideally leading to a static configuration. This
problem is also known as the deployment problem and it is shown that a tracking strategy
concentrating on the Chebyshev center of Voronoi cell surrounding each agent can lead to
a robust behaviour. However, the fact that the Voronoi partition is dynamically updated
leads to complex behaviours involving potential switching. The problems is shown to be
equivalent to the stability analysis for a system governed by a time-varying linear difference
equations. Stability criteria are described in this context base on a parameter dependent
Lyapunov function. Furthermore, we consider the configuration of control system affected
by transmission delay d. Delays are phenomena that cause a time-shift in the input signal
which can be translated into delay difference equations for the closed-loop system. It
is shown that such multi-agent systems affected by delays present complex behaviours,
which deserve particular attention for a complete description in terms of clustering, limit
behaviour and convergence.
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Faculty of Mathematics and Computer Science, Transilvania University of Braşov,
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In this paper we provide another characterization of hyperbolic diameter diminishing
to zero iterated function systems that were studied in [R. Miculescu, A. Mihail, Diameter
diminishing to zero IFSs, arXiv:2101.12705]. The primary tool that we use is an operator
HS , associated to the iterated function system S, which is inspired by the similar one
utilized in Mihail (Fixed Point Theory Appl 2015:15, 2015). Some fixed point results are
also obtained as byproducts of our main result.
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The formal Lagrangian method and self-adjointness technique have been found use-
ful for computing conservation laws of non-variational differential, semi-discrete or finite
difference equations [2, 4, 5]. Although it was shown that every system of differential
equations can be embedded into a bigger variational system [1], how to recover the orig-
inal system through a proper reduction has attracted a lot of attention, particularly for
general differential equations. In this talk, we will give an introduction to the modified
formal variational structure that is, in principle, applicable to all differential equations
[3, 6]. We will also show its potential applications for deriving variational integrators.
Worked examples will be provided.
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E-mail: tamara.servi@imj-prg.fr

Presentation type: Contributed Talk

Logarithmic transseries are formal sums of powers and iterated logarithms with real
coefficients. We consider hyperbolic logarithmic transseries f = λz + ..., 0 < λ < 1.
In dynamics, transseries are associated with the Dulac’s problem of non-accumulation
of limit cycles on a hyperbolic or semi-hyperbolic polycycle of an analytic planar vector
field, which is solved independently by Ilyashenko and Écalle. Every real analytic germ
on 〈0, d〉, d > 0, with Dulac series as its asymptotic expansion, which can be expanded
on some complex domain called standard quadratic domain, is called Dulac germ. We
obtain normal forms of hyperbolic transseries, which are, roughly speaking, the simplest
transseries which are conjugated to the original one. In fact, we generalize results from
[1], but using different techniques. In particular, we obtain normalizations using Banach
fixed point theorem. By Koenigs’ theorem, we know that complex analytic diffeomorphism
f(z) = λz+o(z), 0 < |λ| < 1, can be linearized. We find necessary and sufficient condition
for hyperbolic transseries to be linearized and we apply these results to prove linearization
theorem for hyperbolic Dulac germs on standard quadratic domains, which can be seen as
a generalization of the mentioned Koenigs’ theorem.
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The solvability of the discrete s (x, ·)-Laplacian problems on simple, connected, undi-
rected, weighted, and finite graphs is the first step in research on the same kind of problems
on locally finite graphs, which can be used as a discrete analog of some continues Laplacian
related problems. This analogy can be used to approximate these continuous problems by
the family of such discrete ones.

The main goal is to obtain the existence and uniqueness of solution for problems
connected with the discrete s (x, ·)-Laplacian on simple, connected, undirected, weighted,
and finite graphs where nonlinearities are given in a non-potential form, with the minimal
possible assumptions, positive solutions are also considered.

The non-classical monotonicity methods (see [1]) have been used to prove the existence
and uniqueness of the solution. That can not be done for non-potential problems with the
use of the classical variational approach. Assumption of non-empty graph boundary (see.
[3]) was completely removed. Positive solutions results have been easily adapted to the
considered setting.
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In this paper we propose a game theoretic model with three populations, namely a gov-
ernment, officials who serve the state, and citizens, to analyse the evolution of corruption
in a society. The influence of democracy in corruption is modelled through the action of
the citizens who exercise influence in the government because of their elective power since
corruption causes a great displeasure in the citizens which can result in a vote against a
ruler elite that promotes or is an accomplice to corruption. When immersed in a society
in which corruption is a common occurrence, citizens may behave in a complacent manner
with corruption because of a lack of valid alternatives to this behaviour even if they op-
pose corruption. Indeed, this complacent behaviour may also be observed in democratic
societies and can lead to periods of growing and diminishing corruption. We are thus able
to get a better understanding of some causes for the evolution of corruption and how the
evolution may be halted and the effects of democracy and influence in this.
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Ábel Garab

Institut für Mathematik, Universität Klagenfurt, Austria
E-mail: abel.garab@aau.at
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In a recent paper, Rodrigues and Solà-Morales construct an example of a continuously
Fréchet differentiable discrete dynamical system in a separable Hilbert space for which the
origin is an exponentially asymptotically stable fixed point, although its derivative at 0
has spectral radius greater than one. For maps on general Banach spaces we demonstrate
that the slightly stronger, but also widely used concept of exponential stability allows
a complete characterization in terms of the spectral radius. Moreover, under a spectral
gap condition valid for compact and finite-dimensional linearizations these two stability
notions are shown to be equivalent.
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The inversion of a perturbed difference operator may yield the sum of a contraction and
a compact operator. In this talk, we consider a neutral difference equation, we add and
subtract a linear term and do the proper inversion to get what we call, Neutral Volterra
Difference Equations of Advanced Type. Then we use Krasnoselskii fixed point theorem
to study existence of solutions.

ICDEA 2021, 26-30 July, Sarajevo, Bosnia and Herzegovina

193



Stabilization of multiple equilibria with stochastic
prediction-based control

Alexandra Rodkina

Department of Mathematics, University of the West Indies, Mona, Jamaica
E-mail: alexandra.rodkina@uwimona.edu.jm

Presentation type: Contributed Talk

Prediction-Based control is applied to stabilize multiple equilibria of the continuous
but, generally, non-smooth maps. Sufficient conditions of global stabilization are obtained.
Introduction of noise allows to lower the level of average control. Theoretical results are
illustrated by computer simulations.
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In this paper we compare sufficient conditions for the oscillation of all solutions of
the delay (advanced) difference equation with continuous time inspired by our results
published in [Filomat 34(8) (2020), 2693-2704] to relevant results in the literature. We
provide various examples with constant delays (advances), but with variable or constant
coefficients.
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Over recent years, bifurcation, chaos and fractals are new scientific tools developed for
solving more advanced linear and nonlinear systems. Due to wide-ranging applications,
these are increasingly being involved in all areas of scientific research. Generally, the
real issues and problems and issues of modern scientific, engineering, technological and
economical researches are nonlinear in nature. Most nonlinear systems are extremely
difficult to solve analytically or much harder to analyze. In a nonlinear system, a small
change in a parameter can lead to sudden and dramatic changes in both the qualitative
and quantitative behaviour of the system. During the last three decades of the 20th
century, the excessive studies of nonlinear dynamics showing chaotic behaviour by using
period-doubling in bifurcation diagrams of dynamical systems. It can visualize effectively
through fractals. The purpose of this work provides an overview of fractals and chaos
as well as explore period-doubling in bifurcation diagrams from dynamics of some special
kinds of families of transcendental functions.
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We present general input-output criteria for exponential dichotomy of discrete
nonautonomous systems on the whole line, in the uniform case, in infinite dimen-
sional spaces. We discuss the structure of the admissible pairs of sequence spaces and
the connections between discrete admissibility and exponential dichotomy. Next, we
present a new method of exploring the robustness of exponential dichotomy, that
combines arguments from operator theory with control techniques and we give an-
swers to two open problems regarding upper and lower bounds for the dichotomy
radius, that were brought into attention on the occasion of the 25th International
Conference on Difference Equations and Applications held at University College
London in 2019. Finally, we describe a general scheme for studying the robustness
of exponential dichotomies in the uniform case and discuss some future directions.
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In this paper we introduce the notion of ϕ-contractive parent-child infinite iterated
function system (pcIIFS) and we prove that the corresponding fractal operator is weakly
Picard. The corresponding notions of shift space, canonical projection and their properties
are also treated.
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[2] G. Gwóźdź-Lukowska, J. Jachymski, The Hutchinson-Barnsley theory for infinite iter-
ated function systems, Bull. Australian Math. Soc., 72 (2005), 441 - 454.

[3] L. Ioana, A. Mihail, Iterated function systems consisting of ϕ-contractions, Results
Math., 72 (2017), 2203 - 2225.
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Let (X, ‖·‖) be a Banach space and (An)n∈N be a sequence of bounded linear operators
acting on X. Denote the discrete evolution family associated with the sequence (An)n∈N
by A = (Am,n)m≥n: Am,n = Am−1 · · ·An, for m > n, and An,n = Id.

Fix a sequence of nonnegative numbers (µm)m∈N, strictly increasing and satisfying
limm→+∞ µm = +∞, and let (‖ · ‖m)m∈N be a sequence of norms in X such that, for each
fixed m, the norm ‖ · ‖m is equivalent to ‖ · ‖. We say that the sequence of linear operators
(Am)m∈N (or alternatively that the linear difference equation xm+1 = Amxm, m ∈ N)
admits a µ-dichotomy with respect to the sequence of norms if there are projections Pm,
m ∈ N, such that Am| kerPm → kerPm+1 is invertible, PmAm,n = Am,nPn, m,n ∈ N, and
there are constants λ,D > 0 such that, for every x ∈ X and n,m ∈ N, we have

‖Am,nPnx‖m ≤ D (µm/µn)−λ ‖x‖n, for m ≥ n

and
‖Am,nQnx‖m ≤ D (µn/µm)−λ ‖x‖n, for m ≤ n,

where Qm = Id−Pm is the complementary projection and, for m ≤ n, we use the notation
Am,n = (An,m)−1 : kerPn → kerPm.

In this talk we obtain characterizations of µ-dichotomies based on admissibility con-
ditions. Additionally, we use the obtained characterizations to derive robustness results
for the considered dichotomies. As particular cases, we recover several results in the
literature concerning nonuniform exponential dichotomies and nonuniform polynomial di-
chotomies [1, 2] as well as new results for nonuniform dichotomies with logarithmic growth.
This talk is based on [3].
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Lúıs Silva

CIMA and Department of Mathematics, ISEL (Instituto Superior de Engenharia de
Lisboa) Lisbon, Portugal
E-mail: luis.silva@isel.pt

Presentation type: Contributed Talk

If a dynamic process is generated by a one-dimensional map, then the insertion of a flat
segment on the map will often lead to a superstable periodic orbit. This mechanism has
been widely used in the control of chaos on one-dimensional systems in areas as diverse as
cardiac dynamics (see [2]), telecommunications or electronic circuits (see [5] and references
therein). Let T : [−1, 1]→ [−1, 1] be the tent map and Tu : [−1, 1]→ [−1, 1], u ∈ [−1, 1],
be the flat-topped tent map with constant value u in the plateau. In this work we consider
families of nonautonomous dynamical systems xn+1 = T(u,sn)(xn) where s ∈ {0, 1}N0 is
the iteration pattern, T(u,sn)(x) = Tu(x) if sn = 0 and T(u,sn)(x) = T (x) if sn = 1. We

consider as parameters the pairs (u, s) ∈ [−1, 1] × {0, 1}N0 and study the existence of
a nonautonomous version of Milnor attractors and their coexistence with other kinds of
nonautonomous attractors.
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A difference equation is said to have the shadowing property if in a vicinity of every
approximate solution there exists an exact solution of the difference equation.

In this talk, we will discuss the shadowing property for a class of semilinear difference
equations of the form

xn+1 = Anxn + fn(xn) n ∈ Z, (1)

where An, n ∈ Z are bounded, linear and invertible operators on a Banach space X and
fn : X → X, n ∈ Z is a sequence of Lipschitz maps. In particular, we will formulate
conditions under which (1) exhibits the shadowing property, which unlike some previous
works (see [1, 2]) don’t require any information related to the asymptotic behaviour of the
linear part.
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The purpose of this work is to advance the current state of mathematical knowledge
regarding fixed point theorems of functions. Such ideas have historically enjoyed many
applications , for example, to the qualitative and quantitative understanding of differential,
difference and integral equations. Herein, we extend an established result due to Rus
[Studia Univ. Babeş-Bolyai Math., 22, 1977, 40-42] that involves two metrics to ensure
wider classes of functions admit a unique fixed point. In contrast to the literature, a
key strategy herein involves placing assumptions on the iterations of the function under
consideration, rather than on the function itself. In taking this approach we form new
advances in fixed point theory under two metrics and establish interesting connections
between previously distinct theorems, including those of Rus [Studia Univ. Babeş-Bolyai
Math., 22, 1977, 40-42], Caccioppoli [Rend. Acad. Naz. Linzei. 11, 1930, 31-49] and
Bryant [The American Mathematical Monthly, 75, 1968, 399-400]. Our results make
progress towards a fuller theory of fixed points of functions under two metrics. Our work
lays the foundations for others to potentially explore applications of our new results to
form existence and uniqueness of solutions to boundary value problems, integral equations
and initial value problems.
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We introduce explicit adaptive Milstein methods for stochastic differential equations
(SDEs) with no commutativity condition. The twice continuously differentiable drift and
diffusion are separately locally Lipschitz and together satisfy a monotone condition. These
methods rely on a class of path-bounded timestepping strategies which work by reducing
the stepsize as solutions approach the boundary of a sphere, invoking a backstop method
in the event that the timestep becomes too small. We prove that such schemes are strongly
L2 convergent of order one. This convergence order is inherited by an explicit adaptive
Euler-Maruyama scheme in the additive noise case. Moreover we show that the probability
of using the backstop method at any step can be made arbitrarily small. We compare our
method to other fixed-step Milstein variants on a range of test problems.
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Roman Šimon Hilscher

Department of Mathematics and Statistics, Faculty of Science, Masaryk University,
Kotlarska 2, CZ-61137 Brno, Czech Republic

E-mail: hilscher@math.muni.cz

Presentation type: Contributed Talk

We discuss a topic from the oscillation theory of symplectic difference systems. These
systems include as special cases several important linear difference equations and systems,
such as linear Hamiltonian difference systems, even order Sturm–Liouville difference equa-
tions, second order matrix Sturm–Liouville difference equations, or symmetric three-term
matrix recurrence equations. In this talk we present a method for constructing a con-
joined basis of the symplectic difference system having prescribed numbers of forward and
backward focal points in a given bounded interval. This utilizes the theory of comparative
index and a recent result by the authors on linear Hamiltonian differential systems.
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The dynamic equations on time scales can model many real-world phenomena that
involve discrete data, continuous data, or discrete-continuous data simultaneously. Differ-
ential equations with impulses arise in the mathematical modelling of several evolutionary
processes that involve abrupt changes at certain moments. Also, in most real-world phe-
nomena, the present state of a system depends on some previous history. Therefore, it is
reasonable to include a time-delay term in the process. This talk aims to present some
qualitative results concerning a new class of time-varying delay dynamic equations with
impulses. We establish some criteria for the existence, uniqueness, and stability of the
solution. Our approach is based on the results of fixed point theory and dynamic inequal-
ities. To overcome the difficulties in establishing the uniqueness of the solution, we pose
certain conditions on the time scale domain. We shall try to provide illustrative examples
to support the results obtained.
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For over 50 years, shooting methods have helped the scientific community to see
through some of the fog associated with the qualitative and quantitative properties of
solutions to ordinary differential equations [2]. However, the roles of shooting methods in
the study of boundary value problems (BVPs) involving difference equations is yet to be
fully understood. This sheltered state may have more to do with the human tendancy to
focalize attention on the things that we have been conditioned to [1, p.v], and we have
mostly percieved shooting methods only within the domain of differential equations. How-
ever, developing alternative perspectives in mathematics is important because they can
open up new ways of thinking and working [3, p.1292], [4, Sec.3].

The purpose of this work is to move towards a more complete understanding of the
roles that shooting methods can play in the theory of discrete BVPs. My position is that
shooting methods can provide an important function in exploring discrete BVPs due to:
their compatible characteristics; their accessibility; and the significance and flexibility of
their conclusions. My position is realized through the establishment of new theory and is
supported via exemplification.
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We study a class of polynomial planar systems with singularity of degenerate focus
type without characteristic directions, given by

ẋ = −ny2n−1 ± nxmyn−1(x2m + y2n)k

ẏ = mx2m−1 ±mxm−1yn(x2m + y2n)k,

where m,n, k ∈ N. In the case where m = n and m is odd, we analytically compute the
box dimension of trajectory Γ to be

dimB Γ = 2− 2

1 + 2kn
.

We also show the connection of box dimension to cyclicity of the system under a pertur-
bation.

Furthermore, we develop an efficient numerical scheme for computation of the box
dimension of trajectories of our system. The scheme validates our analytical result in the
case m = n and complements it in the case m ̸= n. Our numerical scheme converges faster
than naive methods for numerical box dimension computation and is optimized for spiral
trajectories in our system.

This is a joint work with Renato Huzak, Darko Žubrinić and Vesna Županović.
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In this paper we consider the dynamical behavior of stochastic Hepatitis C model with
an isolation stage. We construct stochastic model on the basis of the deterministic one
by incorporating randomness of the Gaussian white noise type. On that way we obtain
five-stage system of stochastic differential equations. For our model we prove existence
and uniqueness of the global positive solution and then we consider long time behavior of
the solution. More precisely, we obtain the conditions for model parameters under which
the disease goes to extinction, as well as ones under which we can claim persistence of the
disease in population. Finally, we give a real life example to illustrate acquired theoretical
results.
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The notion of chaos based on the probabilistic measure of upper and lower densities
of the rate of proximality of pairs is termed as distributional chaos and was introduced
by Schweizer and Smı́tal for continuous self-maps on compact metric spaces [1]. Since
then the distributional chaos has evolved into three variants popularly known as DC1,
DC2 and DC3. Shah et. al. extended the notion of distributional chaos for continuous
self-maps on uniform spaces which are not necessarily compact and metrizable [2]. In this
talk, we will discuss the relation between topological definitions of specification property
and distributional chaos defined for uniformly continuous self maps on uniform spaces.
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Let X be a nonempty set and G be a nonempty subset of the power set of X denoted
by exp(X)such that G containd ∅ and it is closed under arbitrary unions, then G is called
a generalized topology (GT as acronym) on X. The pair (X,G) is called a generalized
topological space (GTS as acronym).

Let (X, dn), n ∈ N be a compact metric space and fn : (X, dn) → (X, dn+1) n ∈ N
be a continuous map. Following S. Kolyada and L. Snoha 1996, by a generalized non-
autonomous dynamical system on X (GNDS), we will mean the sequence of functions
f1,∞ = {fi}∞i=1. If fi = f and di = d for i ∈ N, then the system is called autonomous
and denote it by (f). The identity map on X will be denoted by Id. For any i ∈ N, let
f i0 = Id and for any i ∈ N, let fni = fi+(n−1) ◦ · · · ◦ fi+1 ◦ fi,

f−ni = (fn)−1 = f−1
i ◦ f−1

i+1 ◦ · · · ◦ f−1
i+(n−1).

In [6], the generalized entropy in generalized topological spaces is introduced and
studied. In this paper, we introduce and study GT on nonautonomous G-dynamical
systems.
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The goal of our work is to give a complete fractal classification of planar analytic
nilpotent singularities. For the classification, we use the notion of box dimension of (two-
dimensional) orbits on separatrices generated by the unit time map. We also show how
the box dimension of the one-dimensional orbit generated by the Poincaré map, defined
on the characteristic curve near the nilpotent center/focus, reveals an upper bound for the
number of limit cycles near the singularity. We introduce simple formulas for numerical
calculation of the box dimension of one- and two-dimensional orbits and apply them to
nilpotent singularities.
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